Skip to main content
Log in

A comparison of NO2 sensing characteristics of α- and γ-iron oxide-based solid-state gas sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we report on the successful synthesis of α- and γ-iron oxide (hematite and maghemite, respectively) nanopowders using a simple sol–gel technique followed by dries in supercritical ethanol. Microstructural and morphological characterizations were performed using X-ray diffraction (XRD) and transmission and scanning electron microscopies (TEM and SEM). The iron oxide semiconducting materials have been tested as sensing layer in solid-state conductometric planar sensors for the monitoring sof low NO2 concentrations in air. This study demonstrated that the crystalline microstructure of the iron oxide nanopowders greatly affects the NO2 sensing properties, allowing to tune the performances of the developed sensor towards the target gas. γ-Fe2O3 nanopowder-based sensor resulted to have better performance than α-Fe2O3 sensor for NO2 monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Kuang, W. Zeng, H. Ye, Y. Li, Phys. E 97, 314–416 (2018)

    Article  Google Scholar 

  2. S.R. Jamnani, H.M. Moghaddam, S.G. Leonardi, G. Neri, Ceram. Int. 44, 16953–16959 (2018)

    Article  Google Scholar 

  3. G. Korotcenkov, B.K. Cho, Sens. Actuators B 244, 182–210 (2017)

    Article  Google Scholar 

  4. M. Mateos, R.M. Prest, J.M. Suisse, M. Bouvet, Mater. Today Proc. 6, 328–332 (2019)

    Article  Google Scholar 

  5. D. Kriz, M. Kempe, K. Mosbach, Sens. Actuators B 33, 178–181 (1996)

    Article  Google Scholar 

  6. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413–420 (2014)

    Article  Google Scholar 

  7. M. Yin, Z. Zhu, J. Alloy. Compd. 78915, 941–947 (2019)

    Article  Google Scholar 

  8. S. Navazani, M. Hassanisadi, M.M. Eskandari, Z. Talaei, Synth. Met. 260, 116267 (2020)

    Article  Google Scholar 

  9. D. Nunes, A. Pimentel, A. Gonçalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 34, 043001 (2019)

    Article  ADS  Google Scholar 

  10. J. Bruneta, M. Duboisc, A. Paulya, L. Spinellea, A. Ndiaye, K. Guérinc, D.C. Varenne, B. Laurona, Sens. Actuators B Chem. 173, 659–667 (2012)

    Article  Google Scholar 

  11. P. Patnaik, A comprehensive guide to the hazardous properties of chemical substances (Wiley, Hoboken, 2007), p. 1060

    Book  Google Scholar 

  12. M.-J. Park, H.-S. Jeong, H.-J. Joo, H.-Y. Jeong, S.-H. Song, H.-I. Kwon, Improvement of NO2 gas-sensing properties in InGaZnO thin-film transistors by a pre-biasing measurement method. Semicond. Sci. Technol. 34, 065010 (2019)

    Article  ADS  Google Scholar 

  13. V. Balouria, A. Kumar, S. Samanta, A. Singha, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Sens. Actuators B Chem. 181, 471–478 (2013)

    Article  Google Scholar 

  14. S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D. Kolekar, S. Sen, V.B. Patil, Ceram. Int. 39, 6453–6460 (2013)

    Article  Google Scholar 

  15. J.D. Desai, H.M. Pathan, S.-K. Min, K.-D. Jung, O.-S. Joo, Nanocrystalline haematite thin films by chemical solution spray. Semicond. Sci. Technol. 20, 705 (2005)

    Article  ADS  Google Scholar 

  16. D. Flaka, A. Braun, B.S. Mun, M. Döbelie, T. Graule, M. Rekas, Proc. Eng. 47, 257–260 (2012)

    Article  Google Scholar 

  17. S. Capone, M.G. Manera, A. Taurino, P. Siciliano, R. Rella, S. Luby, M. Benkovicova, P. Siffalovic, E. Majkova, Langmuir 30, 1190–1197 (2014)

    Article  Google Scholar 

  18. V. Thangadurai, P. Kopp, J. Power Sources 168, 178–183 (2007)

    Article  ADS  Google Scholar 

  19. D. Han, Ceram. Int. 46, 3304–3310 (2020)

    Article  Google Scholar 

  20. S.M.H. Al-Jawad, Optik 146, 17–26 (2017)

    Article  ADS  Google Scholar 

  21. Y. Hou, A.H. Jayatissa, Sens. Actuators B 2041, 310–318 (2014)

    Article  Google Scholar 

  22. M.R. Mohammadi, Mater. Sci. Semicond. Process. 27, 711–718 (2014)

    Article  Google Scholar 

  23. J. Shieh, H.M. Feng, M.H. Hon, H.Y. Juang, Sens. Actuators B 86, 75–80 (2002)

    Article  Google Scholar 

  24. L.E. Mathevula, L.L. Noto, B.M. Mothudi, M. Chithambo, M.S. Dhlamini, J. Lumin. 192, 879–887 (2017)

    Article  Google Scholar 

  25. Y.P. He, Y.M. Miao, C.R. Li, S.Q. Wang, L. Cao, S.S. Xie, G.Z. Yang, B.S. Zou, Phys. Rev. B 71, 125411 (2005)

    Article  ADS  Google Scholar 

  26. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  27. J.I. Langford, A.J.C. Wilson, J. Appl. Cryst. 11, 102–113 (1978)

    Article  Google Scholar 

  28. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    Article  Google Scholar 

  29. N. Zahmouli, M. Hjiri, L. El Mir, A. Bonavita, N. Donato, G. Neri, S.G. Leonardi, Nanotechnology 30, 5 (2018)

    Google Scholar 

  30. R. Dhahri, M. Hjiri, L. El Mir, A. Bonavita, D. Iannazzo, M. Latino, N. Donato, S.G. Leonardi, G. Neri, J. Phys. D Appl. Phys. 49, 135502–135508 (2016)

    Article  ADS  Google Scholar 

  31. R. Dhahri, M. Hjiri, L. El Mir, E. Fazio, F. Neri, F. Barreca, N. Donato, A. Bonavita, G.S. Leonardi, G. Neri, J. Phys. D Appl. Phys. 48, 255503–255509 (2015)

    Article  ADS  Google Scholar 

  32. M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri, J. Alloys Compd. 634, 187–192 (2015)

    Article  Google Scholar 

  33. M. Hjiri, J. Mater. Sci. Mater. Electron. 31, 5025–5031 (2020)

    Article  Google Scholar 

  34. M. Hjiri, M.S. Aida, G. Neri, Sensors 19, 167 (2019)

    Article  Google Scholar 

  35. S. Bai, K. Tian, H. Fu, Y. Feng, R. Luo, D. Li, A. Chen, C.C. Liu, Sens. Actuators B 268, 136 (2018)

    Article  Google Scholar 

  36. B. Zhang, G. Liu, M. Cheng, Y. Gao, L. Zhao, S. Li, F. Liu, X. Yan, T. Zhang, P. Sun, G. Lu, Sens. Actuators B 261, 252 (2018)

    Article  Google Scholar 

  37. M. Debliquy, C. Baroni, A. Boudiba, J.-M. Tulliani, M. Olivier, C. Zhang, Proc. Eng. 25, 219–222 (2011)

    Article  Google Scholar 

  38. D. Flaka, A. Braun, B.S. Mun, M. Döbeli, T. Graule, M. Rekas, Proc. Eng. 47, 257–260 (2012)

    Article  Google Scholar 

  39. R.A. Wu, C.W. Lin, W.J. Tseng, Ceram. Int. 43, S535–S540 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hjiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hjiri, M., Zahmouli, N., Khouzami, K. et al. A comparison of NO2 sensing characteristics of α- and γ-iron oxide-based solid-state gas sensors. Appl. Phys. A 126, 788 (2020). https://doi.org/10.1007/s00339-020-03829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03829-3

Keywords

Navigation