Skip to main content

Advertisement

Log in

Synthesis and structural properties characterization of titania/zirconia/calcium silicate nanocomposites for biomedical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite the great importance of nanocomposites in biomedical applications, some attractive nanocomposites such astitania/zirconia/calcium silicate (TiO2/ZrO2/CaSiO3) have not been studied before. In this regard, this work aimed to prepare these nanocomposites using a high-energy ball mill. Then, their powders were sintered at 1250 °C and characterized using FTIR spectroscopy, XRD technique and SEM. Moreover, mechanical properties were also measured. The in vitro bioactivity of the sintered nanocomposites was evaluated by soaking them in a simulated body fluid solution and then, examined by FTIR spectroscopy. Furthermore, the antibacterial behavior of these samples was tested against Gram− and Gram+ bacteria by shake flask method. Finally, in vitro cytotoxicity was tested against bone-like cells. The results pointed out that the successive increases in CaSiO3 contents led to noticed decreases in mechanical and antibacterial properties of the resulting nanocomposites. Nevertheless, the presence of CaSiO3 was responsible for giving the sintered samples the required bioactivity and densification behaviors. Notably, all investigated samples revealed excellent biocompatibility behavior. Based on the abovementioned properties, these nanocomposites can be used in orthopaedic and dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.A. Youness, M.A. Taha, M.A. Ibrahim, In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures. Mater. Chem. Phys. 239, 122011 (2020)

    Google Scholar 

  2. I.H.M. Aly, L.A. Mohammed, S. Al-Meer, K. Elsaid, N.A.M. Barakat, Preparation and characterization of wollastonite/titanium oxide nanofiber bioceramics composite as a future implant material. Ceram. Int. 42, 11525–11534 (2016)

    Google Scholar 

  3. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 190, 209–218 (2017)

    Google Scholar 

  4. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Preparation, Fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders. J. Comput. Theor. Nanosci. 14, 2409–2415 (2017)

    Google Scholar 

  5. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceram. Int. 44, 21323–21329 (2018)

    Google Scholar 

  6. G.S. Kaliaraj, V. Vishwakarma, A.M.K. Kirubaharan, Biocompatible zirconia-coated 316 stainless steel with anticorrosive behavior for biomedical application. Ceram. Int. 44, 9780–9786 (2018)

    Google Scholar 

  7. R.A. Youness, M.A. Taha, M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct. 1150, 188–195 (2017)

    ADS  Google Scholar 

  8. T.A.I.C. Sartori, J.A. Ferreira, D. Osiro, L.A. Colnago, E.M.J.A. Pallone, Formation of different calcium phosphate phases on the surface of porous Al2O3–ZrO2 nanocomposites. J. Eur. Ceram. Soc. 38, 743–751 (2018)

    Google Scholar 

  9. X. Wang, Y. Zhou, L. Xia, C. Zhao, L. Chen, D. Yi, J. Chang, L. Huang, X. Zheng, H. Zhu, Y. Xie, Y. Xu, K. Lin, Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf. B 126, 358–366 (2015)

    Google Scholar 

  10. A. Scislowska-Czarnecka, E. Menaszek, B. Szaraniec, E. Kolaczkowska, Ceramic modifications of porous titanium: effects on macrophage activation. Tissue Cell 44, 391–400 (2012)

    Google Scholar 

  11. H. Park, K.Y. Lee, S.J. Lee, K.E. Park, W.H. Park, Plasma-treated poly (lactic-co-glycolic acid) nanofibers for tissue engineering. Macromol. Res. 15, 238–243 (2007)

    Google Scholar 

  12. K.S. Katti, Biomaterials in total joint replacement. Colloids Surf. B Biointerfaces 39, 133–142 (2004)

    Google Scholar 

  13. S. Ni, J. Chang, L. Chou, A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J. Biomed. Mater. Res. A 76, 196–205 (2006)

    Google Scholar 

  14. A.B.Y. Hazar, Preparation and in vitro bioactivity of CaSiO3 powders. Ceram. Int. 33, 687–692 (2007)

    Google Scholar 

  15. R.A. Youness, M.A. Taha, M. Ibrahim, Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications. Mater. Chem. Phys. 257, 123264 (2021)

    Google Scholar 

  16. M.A. Taha, R.A. Youness, M. Ibrahim, Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. (in Press) (2020)

  17. M.A. Taha, R.A. Youness, M.F. Zawrah, Review on nanocomposites fabricated by mechanical alloying. Int. J. Miner. Metall. Mater. 26(9), 1047–1058 (2019)

    Google Scholar 

  18. R.A. Youness, M.A. Taha, A.A. El-Kheshen, M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram. Int. 44, 20677–20685 (2018)

    Google Scholar 

  19. Q. Huang, X. Liu, T.A. Elkhooly, R. Zhang, X. Yang, Z. Shen, Q. Feng, Preparation and characterization of TiO2/silicate hierarchical coating on titanium surface for biomedical applications. Mater. Sci. Eng. C 60, 308–316 (2016)

    Google Scholar 

  20. H.J. Hu, Y.Q. Qiao, F.H. Meng, X.Y. Liu, C.X. Ding, Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium. Colloids Surf. B Biointerfaces 101, 83–90 (2013)

    Google Scholar 

  21. A. Doostmohammadi, Z.K. Esfahani, A. Ardeshirylajimi, Zirconium modified calcium-silicate-based nanocomposites: an in vivo evaluation in a rabbit tibial defect model. Int. J. Appl. Ceram. Technol. 16, 431–437 (2019)

    Google Scholar 

  22. Y. Liang, Y. Xie, H. Ji, L. Huang, X. Zheng, Excellent stability of plasma–sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti-6Al-4 V. J. Appl. Surf. Sci. 256, 4677–4681 (2010)

    ADS  Google Scholar 

  23. A.A. Oshkour, S. Pramanik, S.F.S. Shirazi, M. Mehrali, Y.H. Yau, N.A. Abu Osaman, A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissue replacements. Sci. World J. 14, 1–9 (2014)

    Google Scholar 

  24. M.A. Taha, M.F. Zawrah, Fabrication of Al2O3–ZrO2–Ni composites with improved toughness using nano powders prepared by mechanical alloying. Ceram. Int. 46, 19519–19529 (2020)

    Google Scholar 

  25. R.A. Youness, M.A. Taha, A.A. El-Kheshen, N. El-Faramawy, M. Ibrahim, In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater. Res. Express 6, 1–13 (2019)

    Google Scholar 

  26. M. Ouis, M.A. Taha, G.T. El-Bassyouni, M.A. Azooz, Thermal, mechanical and electrical properties of lithium phosphate glasses doped with copper oxide. Bull. Mater. Sci. 42, 246–255 (2019)

    Google Scholar 

  27. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity. Biomater. 27(15), 2907–2915 (2006)

    Google Scholar 

  28. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W. J. Biomed. Mater. Res. A 24, 721–734 (1990)

    Google Scholar 

  29. R.L. Siqueira, E.D. Zanotto, The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol-gel glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 24, 365–379 (2013)

    Google Scholar 

  30. A. Khaskhoussi, H. Bouhamed, L. Calcbrese, E. Proverbio, J. Bouaziz, Properties and microstructure aspects of TiO2-doped sintered alumina-zirconia composite ceramics. Int. J. Appl. Ceram. Technol. 15, 1532–1541 (2018)

    Google Scholar 

  31. A. Khaskhoussi, L. Calcbrese, J. Bouaziz, E. Proverbio, Effect of TiO2 addition on microstructure of zirconia/alumina sintered ceramics. Ceram. Int. 43(13), 10392–10402 (2017)

    Google Scholar 

  32. X. Wan, A. Hu, M. Li, C. Chang, D. Mao, Performances of CaSiO3 ceramic sintered by spark plasma sintering. Mater. Char. 59, 256–260 (2008)

    Google Scholar 

  33. C. Ohtsuki, T. Miyazaki, M. Kamitakahara, M. Tanihara, Design of novel bioactive materials through organic modification of calcium silicate. J. Eur. Ceram. Soc. 27, 1527–1533 (2007)

    Google Scholar 

  34. R. Samudrala, P. Abdul Azeem, V. Penugurti, B. Manavathi, Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in vitro. Mater. Sci. Eng. C 77, 772–779 (2017)

    Google Scholar 

  35. M. Catauro, F. Bollino, F. Papale, Surface modifications of titanium implants by coating with bioactive and biocompatible poly (ɛ-caprolactone)/SiO2 hybrids synthesized via sol-gel. Arab. J. Chem. 11, 1126–1133 (2018)

    Google Scholar 

  36. B.S. Lee, H.P. Lin, J.C.C. Chan, W.C. Wang, P.H. Hung, Y.H. Tsai, Y.L. Lee, A novel sol-gel-derived calcium silicate cement with short setting time for application in endodontic repair of perforations. Int. J. Nanomed. 18, 261–271 (2018)

    Google Scholar 

  37. S. Laasri, M. Taha, E.K. Hlil, A. Laghzizil, A. Hajiaji, Manufacturing and mechanical properties of calcium phosphate biomaterials. C. R. Mecanique. 340, 715–720 (2012)

    ADS  Google Scholar 

  38. M. Bartoš, T. Suchý, R. Foltàn, Note on the use of different approaches to determine the pore sizes of tissue engineering scaffolds: what do we measure? Biomed. Eng. 17, 1–15 (2018)

    Google Scholar 

  39. C. Shuai, P. Feng, B. Yang, Y. Cao, A. Min, S. Peng, Effect of nano-zirconia on the mechanical and biological properties of calcium silicate scaffolds. Int. J. Appl. Ceram. Technol. 12(6), 1148–1156 (2015)

    Google Scholar 

  40. S. Xu, K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu, C. Ning, Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29, 2588–2596 (2008)

    Google Scholar 

  41. P. De Aza, Z. Luklinska, A. Martinez, M. Anseau, F. Guitian, S. De Aza, Morphological and structural study of pseudowollastonite implants in bone. Microscopy 197, 60–67 (2000)

    Google Scholar 

  42. S. Guerzoni, H. Deplaine, J. El Haskouri, P. Amorós, M.M. Pradas, U. Edlund, G.G. Ferrer, Combination of silica nanoparticles with hydroxyapatite reinforces poly (l-lactide acid) scaffolds without loss of bioactivity. J. Bioact. Compat. Polym. 29(1), 15–31 (2014)

    Google Scholar 

  43. H. Mohammadi, M. Hafezi, N. Nezafati, S. Heasarki, A. Nadernezhad, S.M.H. Ghazanfari, M. Sepantafar, Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological properties. J. Ceram. Sci. Tech. 5(1), 1–12 (2014)

    Google Scholar 

  44. A. Meiszterics, K. Sinkó, Study of bioactive calcium silicate ceramic systems for biomedical applications. In: 5th European IFMBE Conference, IFMBE proceedings, vol 37, pp. 1098-1101 (2011)

  45. H. Jaganathan, B. Godin, Biocompatibility assessment of Si-based nano- and micro-particles. Adv. Drug Deliv. Rev. 64(15), 1800–1819 (2012)

    Google Scholar 

  46. A.E. Hannora, S. Ataya, Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high energy ball milling. Alloys Compd. 658, 222–233 (2016)

    Google Scholar 

  47. D. Bovand, M. Yousepour, S. Rasouli, S. Bagherifa, N. Bovand, A. Tamayol, Characterization of Ti-HA fabricated by mechanical alloying. Mater. Des. 65, 447–453 (2015)

    Google Scholar 

  48. Y.J. No, J.J. Li, H. Zreiqat, Doped calcium silicate ceramics: a new class of candidates for synthetic bone substitutes. Materials 10, 1–40 (2017)

    Google Scholar 

  49. B. Cabal, L. Alou, R. Couceiro, F. Cafini, R. Couceiro, L.E. Tejeda, F. Guitian, R. Torrecillas, J.S. Maya, A new biocompatible and antibacterial free glass-ceramic for medical applications. Sci. Rep. 5440(4), 1–9 (2014)

    Google Scholar 

  50. M. Haghi, M. Hekmatafshar, M.B. Janipour, S.S. Gholizadeh, M.K. Faraz, F. Sayyadifar, M. Ghaedi, Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. Int. J. Adv. Biotechnol. Res. 3, 621–662 (2012)

    Google Scholar 

  51. K. Shiraishi, H. Koscki, T. Tsurumoto, Antimicrobial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf. Inter. Anal. 41, 17–21 (2009)

    Google Scholar 

  52. M.S. Brescó, L.G. Harris, K. Thompson, B. Stanic, M. Morgenstern, L. O’Mahony, R.G. Richards, T.F. Moriarty, Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front. Microbiol. 8, 1–24 (2017)

    Google Scholar 

  53. M.M. Gad, A.M. Thobity, S.Y. Shahin, B.T. Alsaqer, A.A. Ali, Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. Int. J. Nanomed. 12, 5409–5419 (2017)

    Google Scholar 

  54. S. Gowri, R.R. Gandhi, M. Sundrarajan, Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J. Mater. Sci. Technol. 30(8), 782–790 (2014)

    Google Scholar 

  55. C. Jayaseelan, A.A. Rahuman, S.M. Roopan, A.V. Kirthi, J. Venkatesan, S. Kim, M. Iyappan, C. Siva, Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim. Acta A 107, 82–89 (2013)

    ADS  Google Scholar 

  56. H. Koseki, K. Shiraishi, T. Asahara, T. Tsurumoto, H. Shindo, Photocatalytic bactericidal action of fluorescent light in a titanium dioxide particle mixture: an in vitro study. Biomed. Res. 30, 189–192 (2009)

    Google Scholar 

  57. S.L. Jangra, L. Stalin, N. Dibaghi, S. Kumar, J. Tawale, S.P. Singh, R. Pasricha, Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J. Nanosci. Nanotechnol. 12(9), 77105–77112 (2012)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah under grant No. (G: 32-980-1441). The authors therefore gratefully acknowledge technical and financial support from DSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha A. Youness.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbuShanab, W.S., Moustafa, E.B., Taha, M.A. et al. Synthesis and structural properties characterization of titania/zirconia/calcium silicate nanocomposites for biomedical applications. Appl. Phys. A 126, 787 (2020). https://doi.org/10.1007/s00339-020-03975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03975-8

Keywords

Navigation