Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 14, 2020

Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution

  • Yaneth Cardona , Miguel Angel Vicente , Sophia A. Korili and Antonio Gil ORCID logo EMAIL logo

Abstract

The world is faced with several problems as regards water pollution. This is due to several factors, including the discharge of effluents into the environment with no prior treatment. This wastewater, therefore, contains significant levels of pollutants, including numerous toxic organic contaminants and others that are similarly undesirable. Several studies have attempted to find ways of removing wastewater contaminants using pillared interlayered clays (PILC) as adsorbents. In this work, we present a summary of those studies that have used PILC as adsorbents for the removal of organic compounds from aqueous solutions while simultaneously illustrating their potential for this purpose. A general overview is provided so that the reader can acquire a basic understanding of the PILC and their modified counterparts that have been used, and some of the characteristics that can directly affect their adsorption behavior, especially their textural and surface properties.


Corresponding author: Antonio Gil, INAMAT^2-Science Department, Public University of Navarra, Los Acebos Building, 31006-Pamplona, Spain, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful for financial support from the Spanish Ministry of Economy, Industry and Competitiveness (AEI/MINECO) and the European Regional Development Fund (ERDF) through project MAT2016-78863-C2-R. YC thanks the Universidad Pública de Navarra for a pre-doctoral grant (IberusTalent, European Union’s H2020 research and innovation programme under Marie Sklodowska-Curie grant agreement Nº 801586). AG also thanks Santander Bank for funding via the Research Intensification Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abdesselam, T., Karroua, M., Farissi, M., Levitz, P., Van Damme, H., Bergaya, F., and Margulies, L. (1999). Adsorption of phenol and its chlorine derivatives on PILCS and organo- PILCS. J Chim Phys 96: 464–469. https://doi.org/10.1051/jcp:1999153.10.1051/jcp:1999153Search in Google Scholar

Ain, Q. U, Rasheed, U., Yaseen, M., Zhang, H., and Tong, Z. (2020). Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. J. Hazard Mater. 397: 122758. https://doi.org/10.1016/j.jhazmat.2020.122758.Search in Google Scholar

Al Ani, F. H., GhY, AL-K., and NKh, Al-B. (2019). Diclofenac removal from wastewater by iraqi pillared clay. Eng. Technol. J 37: 281–288.10.30684/etj.37.2C.13Search in Google Scholar

Al-Asheh, S., Banat, F., and Abu-Aitah, L. (2003). Adsorption of phenol using different types of activated bentonites. Separ. Purif. Technol. 33: 1–10. https://doi.org/10.1016/s1383-5866(02)00180-6.Search in Google Scholar

Altunlu, M. and Yapar, S. (2007). Effect of OH−/Al3+ and Al3+/clay ratios on the adsorption properties of Al-pillared bentonites. Colloids Surf A Physicochem Eng Asp 306: 88–94. https://doi.org/10.1016/j.colsurfa.2006.10.071.Search in Google Scholar

Amin, A., and Jayson, G. G. (1996). Humic substance uptake by hydrotalcites and PILCs. Water Res. 30: 299–306. https://doi.org/10.1016/0043-1354(95)00182-4.Search in Google Scholar

Arellano-Cardenas, S., Gallardo-Velazquez, T., Osorio-Revilla, G., and Lopez-Cortez, M. S. (2008). Preparation of a porous clay heterostructure and study of its adsorption capacity of phenol and chlorinated phenols from aqueous solutions. Water Environ. Res. 80: 60–67. https://doi.org/10.2175/106143007x220653.Search in Google Scholar PubMed

Awad, A. M., Shaikh, S. M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A., and Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Separ. Purif. Technol. 228: 115719. https://doi.org/10.1016/j.seppur.2019.115719.Search in Google Scholar

Ayari, F., Manai, G., Khelifi, S., and Trabelsi-Ayadi, M. (2019). Treatment of anionic dye aqueous solution using Ti, HDTMA and Al/Fe pillared bentonite. Essay to regenerate the adsorbent. J Saudi Chem Soc 23: 294–306. https://doi.org/10.1016/j.jscs.2018.08.001.Search in Google Scholar

Aziz, B. K., Salh, D. M., Kaufhold, S., and Bertier, P. (2019). The high efficiency of anionic dye removal using Ce-Al13/pillared clay from Darbandikhan natural clay. Molecules 24: 2720.10.3390/molecules24152720Search in Google Scholar PubMed PubMed Central

Baloyi, J., Ntho, T., and Moma, J. (2018). Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Adv. 8: 5197–5211. https://doi.org/10.1039/c7ra12924f.Search in Google Scholar PubMed PubMed Central

Bouberka, Z., Kacha, S., Kameche, M., Elmaleh, S., and Derriche, Z. (2005). Sorption study of an acid dye from an aqueous solutions using modified clays. J. Hazard Mater. 119: 117–124. https://doi.org/10.1016/j.jhazmat.2004.11.026.Search in Google Scholar PubMed

Bouberka, Z., Khenifi, A., Ait Mahamed, H., Haddou, B., Belkaid, N., Bettahar, N., and Derriche, Z. (2009). Adsorption of Supranol Yellow 4 GL from aqueous solution by surfactant-treated aluminum/chromium-intercalated bentonite. J. Hazard Mater. 162: 378–385. https://doi.org/10.1016/j.jhazmat.2008.05.079.Search in Google Scholar PubMed

Bouras, O., Bollinger, J. C., and Baudu, M. (2010). Effect of humic acids on pentachlorophenol sorption to cetyltrimethylammonium-modified, Fe- and Al-pillared montmorillonites. Appl. Clay Sci. 50: 58–63. https://doi.org/10.1016/j.clay.2010.07.002.Search in Google Scholar

Bouras, O., Bollinger, J. C., Baudu, M., and Khalaf, H. (2007). Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays. Appl. Clay Sci. 37: 240–250. https://doi.org/10.1016/j.clay.2007.01.009.Search in Google Scholar

Bouras, O., Chami, T., Houari, M., Khalaf, H., Bollinger, J. C., and Baudu, M. (2002). Removal of sulfacid brilliant pink from an aqueous stream by adsorption onto surfactant-modified Ti-pillared montmorillonite. Environ. Technol. 23: 405–411. https://doi.org/10.1080/09593332508618397.Search in Google Scholar PubMed

Bouras, O., Houari, M., and Khalaf, H. (1999). Adsorption of some phenolic derivatives by surfactant treated al‐pillared Algerian bentonite. Environ. Toxicol. Chem. 70: 221–227. https://doi.org/10.1080/02772249909358750.Search in Google Scholar

Bouras, O., Houari, M., and Khalaf, H. (2001). Using of surfactant modified Fe-pillared bentonite for the removal of pentachlorophenol from aqueous stream. Environ. Technol. 22: 69–74. https://doi.org/10.1080/09593332208618307.Search in Google Scholar PubMed

Brindley, G. W. and Sempels, R. E. (1977). Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner. 12: 229–237. https://doi.org/10.1180/claymin.1977.012.3.05.Search in Google Scholar

Bringle, C. D., Shibi, I. G., Vinod, V. P., and Anirudhan, T. S. (2005). Sorption of humic acid from aqueos solutions by lanthana alumina oxide pillared bentonite. J. Sci. Ind. Res. 46: 782–288. https://doi.org/10.1016/j.desal.2004.09.007.Search in Google Scholar

Cabrera-Lafaurie, W. A., Román, F. R., and Hernández-Maldonado, A. J. (2012). Transition metal modified and partially calcined inorganic–organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water. J. Colloid Interface Sci. 386: 381–391. https://doi.org/10.1016/j.jcis.2012.07.037.Search in Google Scholar

Cabrera-Lafaurie, W. A., Román, F. R., and Hernández-Maldonado, A. J. (2015). Single and multi-component adsorption of salicylic acid, clofibric acid, carbamazepine and caffeine from water onto transition metal modified and partially calcined inorganic–organic pillared clay fixed beds. J. Hazard Mater. 282: 174–182. https://doi.org/10.1016/j.jhazmat.2014.03.009.Search in Google Scholar

Chauhan, M., Saini, V. K., and Suthar, S. (2020a). Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay. J. Porous Mater. 27: 383–393. https://doi.org/10.1007/s10934-019-00817-8.Search in Google Scholar

Chauhan, M., Saini, V. K., and Suthar, S. (2020b). Enhancement in selective adsorption and removal efficiency of natural clay by interaction of Zr-pillars into its layered nanostructure. J. Clean. Prod. 258: 120686. https://doi.org/10.1016/j.jclepro.2020.120686.Search in Google Scholar

Chauhan, M., Saini, V. K., and Suthar, S. (2020c). Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water. J. Hazard Mater. 19: 122832. https://doi.org/10.1016/j.jhazmat.2020.122832.Search in Google Scholar

Cheknane, B., Baudu, M., Basly, J. P., and Bouras, O. (2010a). Adsorption of basic dyes in single and mixture systems on granular inorganic–organic pillared clays. Environ. Technol. 31: 815–822. https://doi.org/10.1080/09593331003667758.Search in Google Scholar

Cheknane, B., Bouras, O., Baudu, M., Basly, J. P., and Cherguielaine, A. (2010b). Granular inorgano-organo pillared clays (GIOCs): preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions. Chem. Eng. J. 158: 528–534. https://doi.org/10.1016/j.cej.2010.01.043.Search in Google Scholar

Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97: 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001.Search in Google Scholar

Danis, T. G., Albanis, T. A., Petrakis, D. E., and Pomonis, P. J. (1998). Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates. Water Res. 32: 295–302. https://doi.org/10.1016/s0043-1354(97)00206-6.Search in Google Scholar

Dinari, M. and Dadkhah, F. (2020). Swift reduction of 4-nitrophenol by easy recoverable magnetite-Ag/layered double hydroxide/starch bionanocomposite. Carbohydr. Polym. 228: 115392. https://doi.org/10.1016/j.carbpol.2019.115392.Search in Google Scholar PubMed

Ding, M., Zhu, H., Lu, M. G., and Greenfield, P. (2002). Photocatalytic Environmental Remediation involving Clay Surfaces, 2nd ed.: Encyclopedia of Surface and Colloid Science, pp. 4525–4537.Search in Google Scholar

Ding, M., Zuo, S., and Qi, C. (2015). Preparation and characterization of novel composite AlCr-pillared clays and preliminary investigation for benzene adsorption. Appl. Clay Sci. 115: 9–16. https://doi.org/10.1016/j.clay.2015.07.020.Search in Google Scholar

Dong, S. l., Su, Y. X., Liu, X., Li, Q. C., Yuan, M. H., Zhou, H., and Deng, W. Y. (2018). Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts. J. Fuel Chem. Technol. 46: 1231–1239. https://doi.org/10.1016/s1872-5813(18)30051-3.Search in Google Scholar

Dyer, A., Gallardo, T., and Roberts, C. W. (1989). Preparation and properties of clays pillared with zirconium and their Use in HPLC Separations. In: Jacobs, P. A., and van Santen, R. A. (Eds.), Studies in Surface Science and Catalysis. Amsterdam: Elsevier Science Publishers, pp. 389–398.10.1016/S0167-2991(08)61736-XSearch in Google Scholar

Gil, A., Assis, F. C. C., Albeniz, S., and Korili, S. A. (2011). Removal of dyes from wastewaters by adsorption on pillared clays. Chem. Eng. J. 168: 1032–1040. https://doi.org/10.1016/j.cej.2011.01.078.Search in Google Scholar

Gil, A., Gandía, L. M., and Vicente, M. A. (2000). Recent advances in the synthesis and catalytic applications of pillared clays. Catal. Rev. 42: 145–212. https://doi.org/10.1081/cr-100100261.Search in Google Scholar

Gil, A., Korili, S. A., and Vicente, M. A. (2008). Recent advances in the control and characterization of the porous structure of pillared clay catalysts. Catal. Rev. 50: 153–221. https://doi.org/10.1080/01614940802019383.Search in Google Scholar

González, B., Trujillano, R., Vicente, M. A., Rives, V., de Faria, E. H., Ciuffi, K. J., Korili, S. A., and Gil, A. (2017). Doped Ti-pillared clays as effective adsorbents-Application to methylene blue and trimethoprim removal. Environ. Chem. 14: 267–278. https://doi.org/10.1071/en16192.Search in Google Scholar

Hamidouche, S., Bouras, O., Zermane, F., Cheknane, B., Houari, M., Debord, J., Harel, M., Bollinger, J. C., and Baudu, M. (2015). Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon. Chem. Eng. J. 279: 964–972. https://doi.org/10.1016/j.cej.2015.05.012.Search in Google Scholar

Hlongwane, G. N., Sekoai, P. T., Meyyappan, M., and Moothi, K. (2019). Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci. Total Environ. 656: 808–833. https://doi.org/10.1016/j.scitotenv.2018.11.257.Search in Google Scholar PubMed

Hou, M. F., Ma, C. X., Zhang, W. D., Tang, X. Y., Fan, Y. N., and Wan, H. F. (2011). Removal of rhodamine B using iron-pillared bentonite. J. Hazard Mater. 186: 1118–1123. https://doi.org/10.1016/j.jhazmat.2010.11.110.Search in Google Scholar PubMed

Ismadji, S., Soetaredjo, F. E., and Ayucitra, A. (2015). SpringerBriefs in Molecular Science, Green Chemistry for Sustainability, 1st ed.: Springer International Publishing. Clay materials for environmental remediation.10.1007/978-3-319-16712-1_1Search in Google Scholar

Jiang, J. Q. Cooper, C., and Ouki, S. (2002). Comparison of modified montmorillonite adsorbents: Part I: preparation, characterization and phenol adsorption. Chemosphere 47: 711–716. https://doi.org/10.1016/s0045-6535(02)00011-5.Search in Google Scholar

Jiang, J. Q, and Zeng, Z. (2003). Comparison of modified montmorillonite adsorbents: Part II: the effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere 53: 53–62. https://doi.org/10.1016/s0045-6535(03)00449-1.Search in Google Scholar

Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z. I. H., Bhatti, H. N., and Nouren, S. (2018). Dyes adsorption using clay and modified clay: a review. J. Mol. Liq. 256: 395–407. https://doi.org/10.1016/j.molliq.2018.02.034.Search in Google Scholar

Khankhasaeva, S. T., Dashinamzhilova, E. T, and Dambueva, D. V. (2017). Oxidative degradation of sulfanilamide catalyzed by Fe/Cu/Al-pillared clays. Appl. Clay Sci. 146: 92–99. https://doi.org/10.1016/j.clay.2017.05.018.Search in Google Scholar

Khelifi, S., and Ayari, F. (2019). Modified for anionic dye removal from aqueous solutions. Adsorbent regeneration by the photo-Fenton process. CR Chim 22: 154–160. https://doi.org/10.1016/j.crci.2018.12.001.Search in Google Scholar

Konstantinou, I. K., Albanis, T. A., Petrakis, D. E., and Pomonis, P. J. (2000). Removal of herbicides from aqueous solutions by adsorption on Al-pillared clays, Fe–Al pillared clays and mesoporous alumina aluminum phosphates. Water Res. 34: 3123–3136. https://doi.org/10.1016/s0043-1354(00)00071-3.Search in Google Scholar

Lee, S. M. and Tiwari, D. (2012). Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview. Appl. Clay Sci. 59-60: 84–102. https://doi.org/10.1016/j.clay.2012.02.006.Search in Google Scholar

Lezehari, M., Basly, J. P., Baudu, M., and Bouras, O. (2010). Alginate encapsulated pillared clays: removal of a neutral/anionic biocide (pentachlorophenol) and a cationic dye (safranine) from aqueous solutions. Colloids Surf A Physicochem Eng Asp 366: 88–94. https://doi.org/10.1016/j.colsurfa.2010.05.021.Search in Google Scholar

Lezehari, M., Baudu, M., Bouras, O., and Basly, J. P. (2012). Fixed-bed column studies of pentachlorophenol removal by use of alginate-encapsulated pillared clay microbeads. J. Colloid Interface Sci. 379: 101–106. https://doi.org/10.1016/j.jcis.2012.04.054.Search in Google Scholar PubMed

Li, J., Hu, M., Zuo, S., and Wang, X (2018). Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts. Curr Opin Chem Eng 20: 93–98. https://doi.org/10.1016/j.coche.2018.02.001.Search in Google Scholar

Li, J., Li, Y., and Lu, J. (2009). Adsorption of herbicides 2,4-D and acetochlor on inorganic–organic bentonites. Appl. Clay Sci. 46: 314–318. https://doi.org/10.1016/j.clay.2009.08.032.Search in Google Scholar

Liu, Y. N., Dong, C., Wei, H., Yuan, W., and Li, K. (2015). Adsorption of levofloxacin onto an iron-pillared montmorillonite (clay mineral): kinetics, equilibrium and mechanism. Appl. Clay Sci. 118: 301–307. https://doi.org/10.1016/j.clay.2015.10.010.Search in Google Scholar

Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X., and Ayoko, G. A. (2016). Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: a comparative study of single and multiple solute. Colloids Surf A Physicochem Eng Asp 497: 63–71. https://doi.org/10.1016/j.colsurfa.2016.02.032.Search in Google Scholar

Mabrouki, H. and Akretche, D. (2016). Diclofenac potassium removal from water by adsorption on natural and pillared clay. Desalination Water Treat 57: 6033–6043. https://doi.org/10.1080/19443994.2014.1002008.Search in Google Scholar

Marco-Brown, J. L., Barbosa-Lema, C. M., Torres Sánchez, R. M., Mercader, R. C., and Afonso (2012). MdS. Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Appl. Clay Sci. 58: 25–33. https://doi.org/10.1016/j.clay.2012.01.004.Search in Google Scholar

Matthes, W. and Kahr, G. (2000). Sorption of organic compounds by Al and Zr-Hydroxy-Intercalated and pillared bentonite. Clay Clay Miner. 48: 593–602. https://doi.org/10.1346/ccmn.2000.0480601.Search in Google Scholar

Meier, L. P., Nueesch, R., and Madsen, F. T. (2001). Organic pillared clays. J. Colloid Interface Sci. 238: 24–32. https://doi.org/10.1006/jcis.2001.7498.Search in Google Scholar PubMed

Michot, L., and Pinnavaia, T. (1991). Adsorption of chlorinated phenols from aqueous solution by surfactant-modified pillared clays. Clay Clay Miner. 39: 634–641. https://doi.org/10.1346/ccmn.1991.0390609.Search in Google Scholar

Mohamed, E., Salhi, S., Chraibi, I., El Bachiri, A., Fauconnier, M. L., and Abdesselam, T. (2014). Characterization and adsorption study of thymol on pillared bentonite. Open J. Phys. Chem. 04: 98–116.10.4236/ojpc.2014.43013Search in Google Scholar

Molu, Z. B., and Yurdakoç, K. (2010). Preparation and characterization of aluminum pillared K10 and KSF for adsorption of trimethoprim. Microporous Mesoporous Mater. 127: 50–60. https://doi.org/10.1016/j.micromeso.2009.06.027.Search in Google Scholar

Ngulube, T., Gumbo, J. R., Masindi, V., and Maity, A. (2017). An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J. Environ. Manag. 191: 35–57. https://doi.org/10.1016/j.jenvman.2016.12.031.Search in Google Scholar PubMed

Nunes, C. D., Pires, J., Carvalho, A. P., Calhorda, M. J., and Ferreira, P. (2008). Synthesis and characterisation of organo-silica hydrophobic clay heterostructures for volatile organic compounds removal. Microporous Mesoporous Mater. 111: 612–619. https://doi.org/10.1016/j.micromeso.2007.09.008.Search in Google Scholar

Ortiz-Martínez, K., Reddy, P., Cabrera-Lafaurie, W. A., Román, F. R., and Hernández-Maldonado, A. J. (2016). Single and multi-component adsorptive removal of bisphenol A and 2,4-dichlorophenol from aqueous solutions with transition metal modified inorganic–organic pillared clay composites: effect of pH and presence of humic acid. J. Hazard Mater. 312: 262–271. https://doi.org/10.1016/j.jhazmat.2016.03.073.Search in Google Scholar PubMed

Peng, X., Luan, Z., Chen, F., Tian, B., and Jia, Z. (2005). Adsorption of humic acid onto pillared bentonite. Desalination 174: 135–143. https://doi.org/10.1016/j.desal.2004.09.007.Search in Google Scholar

Queirós, S., Morais, V., Rodrigues, C. S. D., Maldonado-Hódar, F. J., and Madeira, L. M. (2015). Heterogeneous Fenton’s oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor. Separ. Purif. Technol. 141: 235–245. https://doi.org/10.1016/j.seppur.2014.11.046.Search in Google Scholar

Rahul, D., Srinivasa Krishna, T., Gowrisankar, M., and Ramachandran, D. (2015). Molecular interactions and theoretical estimation of ultrasonic speeds using scaled particle theory in binary mixtures of 3-chloroaniline and 1-alkanols (C6–C10) at different temperatures. J. Mol. Liq. 212: 618–628. https://doi.org/10.1016/j.molliq.2015.09.046.Search in Google Scholar

Ramírez, J. H., Galeano, L. A., Pinchao, G., Bedoya, R. A., and Hidalgo, A. (2018). Optimized CWPO phenol oxidation in CSTR reactor catalyzed by Al/Fe-PILC from concentrated precursors at circumneutral pH. J Environ Chem Eng 6: 2429–2441. https://doi.org/10.1016/j.jece.2018.02.024.Search in Google Scholar

Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater. In. Organic Pollutants - Monitoring, Risk and Treatment, 167–194: Intech.10.5772/55953Search in Google Scholar

Roca Jalil, M. E., Baschini, M., Rodríguez-Castellón, E., Infantes-Molina, A., and Sapag, K. (2014). Effect of the Al/clay ratio on the thiabendazol removal by aluminum pillared clays. Appl. Clay Sci. 87: 245–253. https://doi.org/10.1016/j.clay.2013.11.014.Search in Google Scholar

Roca Jalil, M. E., Baschini, M., and Sapag, K. (2017). Removal of ciprofloxacin from aqueous solutions using pillared clays. Materials 10: 1345. https://doi.org/10.3390/ma10121345.Search in Google Scholar PubMed PubMed Central

Roca Jalil, M. E., Toschi, F., Baschini, M., and Sapag, K. (2018). Silica pillared montmorillonites as possible adsorbents of antibiotics from water media. Appl. Sci. 8: 1403. https://doi.org/10.3390/app8081403.Search in Google Scholar

Roca Jalil, M. E., Vieira, R. S., Azevedo, D., Baschini, M., and Sapag, K. (2013). Improvement in the adsorption of thiabendazole by using aluminum pillared clays. Appl. Clay Sci. 71: 55–63. https://doi.org/10.1016/j.clay.2012.11.005.Search in Google Scholar

Sakellarides, T. M., Petrakis, D. E., Pomonis, P. J., and Albanis, T. A. (1999). Removal of organophosphorus insecticides from aqueous solution by adsorption on microporous pillared clays and mesoporous alumina aluminum phosphates. Environ. Technol. 20: 1033–1044. https://doi.org/10.1080/09593332008616900.Search in Google Scholar

Shu, H. T., Li, D., Scala, A. A., and Ma, Y. H. (1997). Adsorption of small organic pollutants from aqueous streams by aluminosilicate-based microporous materials. Separ. Purif. Technol. 11: 27–36. https://doi.org/10.1016/s1383-5866(96)01005-2.Search in Google Scholar

Srinivasan, R. (2011). Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Ann. Mater. Sci. Eng., https://doi.org/10.1155/2011/872531.Search in Google Scholar

Tian, S., Jiang, P., Ning, P., and Su, Y. (2009). Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chem. Eng. J. 151: 141–148. https://doi.org/10.1016/j.cej.2009.02.006.Search in Google Scholar

Tran, N. H., Hoang, L., Nghiem, L. D., Nguyen, N. M. H., Ngo, H. H., Guo, W., Trinh, Q. T., Mai, N. H., Chen, H., Nguyen, D. D., Ta, T. T., and Gin, K. Y. H. (2019). Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam. Sci. Total Environ. 692: 157–174. https://doi.org/10.1016/j.scitotenv.2019.07.092.Search in Google Scholar PubMed

Undabeytia, T., Galán-Jiménez, M. C., Gómez-Pantoja, E., Vázquez, J., Casal, B., Bergaya, F., and Morillo, E. (2013). Fe-pillared clay mineral-based formulations of imazaquin for reduced leaching in soil. Appl. Clay Sci. 80-81: 382–389. https://doi.org/10.1016/j.clay.2013.07.001.Search in Google Scholar

Vidal, C. B., dos Santos, A. B., do Nascimento, R. F., and Bandosz, T. J. (2015). Reactive adsorption of pharmaceuticals on tin oxide pillared montmorillonite: effect of visible light exposure. Chem. Eng. J. 259: 865–875. https://doi.org/10.1016/j.cej.2014.07.079.Search in Google Scholar

Vinod, V. P. and Anirudhan, T. S. (2002a). Treatment of phenol rich aqueous solutions using surface modified pillared clay. Indian J. Eng. Mater. Sci. 9: 128–136.Search in Google Scholar

Vinod, V. and Anirudhan, T. S. (2002b). Sorption of tannic acid on zirconium pillared clay. J. Chem. Technol. Biotechnol. 77: 92–101. https://doi.org/10.1002/jctb.530.Search in Google Scholar

Vinod, V. P. and Anirudhan, T. S. (2003). Adsorption behaviour of basic dyes on the humic acid immobilized pillared clay. Water Air Soil Pollut. 150: 193–217. https://doi.org/10.1023/a:1026145631713.10.1023/A:1026145631713Search in Google Scholar

Vinod, V., Varghese, S., and Anirudhan, T. S. (2003). Adsorption performance of Zr-pillared montmorillonite for the removal of organic pollutants from aqueous phase. Indian J. Chem. Technol. 10: 201–210.Search in Google Scholar

Wang, Y., Zhang, P., Wen, K., Su, X., Zhu, J., and He, H. (2016). A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM. Microporous Mesoporous Mater. 224: 285–293. https://doi.org/10.1016/j.micromeso.2015.12.053.Search in Google Scholar

Wibulswas, R., White, D. A., and Rautiu, R. (1998). Removal of humic substances from water by alumina-based pillared clays. Environ. Technol. 19: 627–632. https://doi.org/10.1080/09593331908616719.Search in Google Scholar

Wibulswas, R., White, D. A., and Rautiu, R. (1999). Adsorption of phenolic compounds from water by surfactant-modified pillared clays. Process Saf. Environ. Protect. 77: 88–92. https://doi.org/10.1205/095758299529857.Search in Google Scholar

Wu, P. X., Liao, Z. W., Zhang, H. F., and Guo, J. G. (2001). Adsorption of phenol on inorganic–organic pillared montmorillonite in polluted water. Environ. Int. 26: 401–407. https://doi.org/10.1016/s0160-4120(01)00019-8.Search in Google Scholar

Yan, F., Spyrou, K., Thomou, E., Kumar, S., Cao, H., Stuart, M. C. A., Pei, Y., Gournis, D., and Rudolf, P. (2020). Smectite clay pillared with copper complexed polyhedral oligosilsesquioxane for adsorption of chloridazon and its metabolites. Environ. Sci.: Nano 7: 424–437. https://doi.org/10.1039/c9en00974d.Search in Google Scholar

Yao, Y., Yu, M., Yin, H., Wei, F., Zhang, J., Hu, H., and Wang, S. (2019). Tannic acid-Fe coordination derived Fe/N-doped carbon hybrids for catalytic oxidation processes. Appl. Surf. Sci. 489: 44–54. https://doi.org/10.1016/j.apsusc.2019.05.275.Search in Google Scholar

Yuan, P., Yin, X., He, H., Yang, D., Wang, L., and Zhu, J. (2006). Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous. Mesoporous. Mater. 93: 240–247. https://doi.org/10.1016/j.micromeso.2006.03.002.Search in Google Scholar

Zahaf, F., Dali, N., Marouf, R., and Ouadjenia, F. (2015). Removal of a textile dye by pillared clay. Int. J Environ. Chem. Eng. 6: 11–14.Search in Google Scholar

Zeng, X. Q. and Liu, W. P. (2005). Adsorption of Direct Green B on mixed hydroxy-Fe-Al pillared montmorillonite with large basal spacing. J Environ Sci-China 17: 159–162. https://doi.org/10.1360/03yd0553.Search in Google Scholar

Zermane, F., Bouras, O., Baudu, M., and Basly, J. P. (2010). Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo–inorgano pillared montmorillonite clay. J. Colloid Interface Sci. 350: 315–319. https://doi.org/10.1016/j.jcis.2010.06.040.Search in Google Scholar PubMed

Zermane, F., Cheknane, B., Basly, J. P., Bouras, O., and Baudu, M. (2013). Influence of humic acids on the adsorption of Basic Yellow 28 dye onto an iron organo–inorgano pillared clay and two Hydrous Ferric Oxides. J. Colloid Interface Sci. 395: 212–216. https://doi.org/10.1016/j.jcis.2012.12.038.Search in Google Scholar

Zhou, Q., He, H. P., Zhu, J. X., Shen, W., Frost, R. L., and Yuan, P. (2008). Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite—implications for water purification. J. Hazard Mater. 154: 1025–1032. https://doi.org/10.1016/j.jhazmat.2007.11.009.Search in Google Scholar

Zielke, R. C. and Pinnavaia, T. J. (1988). Modified clays for the adsorption of environmental toxicants: binding of chlorophenols to pillared, delaminated, and hydroxy-interlayered smectites. Clay Clay Miner. 36: 403–408. https://doi.org/10.1346/ccmn.1988.0360504.Search in Google Scholar

Zuo, S., Zhou, R., and Qi, C. (2011). Synthesis and characterization of aluminum and Al/REE pillared clays and supported palladium catalysts for benzene oxidation. J. Rare Earths 29: 52–57. https://doi.org/10.1016/s1002-0721(10)60393-6.Search in Google Scholar

Received: 2020-03-17
Accepted: 2020-07-04
Published Online: 2020-09-14
Published in Print: 2022-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2020-0015/html
Scroll to top button