Skip to main content
Log in

Attractivity for Differential Equations of Fractional order and ψ-Hilfer Type

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper investigates the overall solution attractivity of the fractional differential equation involving the ψ-Hilfer fractional derivative and using the Krasnoselskii’s fixed point theorem. We highlight some particular cases of the results presented here, especially involving the Riemann-Liouville, thus illustrating the broad class of fractional derivatives to which these results can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Abbas, M. Benchohra, J.R. Graef, Coupled Sytems of Hilfer fractional differential inclusions in Banach spaces. Commun. Pure & Appl. Anal. 17, No 6 (2018), 2479–2493; DOI: 10.3934/cpaa.2018118.

    Article  MathSciNet  Google Scholar 

  2. S. Abbas, M. Benchohra, N. Hamidi, G. N’Guérékata, Existence and attractivity results for coupled systems of nonlinear Volterra–Stieltjes multidelay fractional partial integral equations. Abstr. Appl. Anal. 2018 (2018), Article ID 8735614, 10 pages; DOI: 10.1155/2018/8735614.

  3. S. Abbas, R.P. Agarwal, M. Benchohra, and F. Berhoun, Global attractivity for Volterra type Hadamard fractional integral equations in Fréchet spaces. Demonstr. Math. 51 (2018), 131–140; DOI: 10.1515/dema-2018-0009.

    Article  MathSciNet  Google Scholar 

  4. S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 21, No 4 (2018), 1027–1045; DOI: 10.1515/fca-2018-0056; https://www.degruyter.com/view/journals/fca/21/4/fca.21.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  5. S. Abbas, M. Benchohra, and J. Henderson, Existence and attractivity results for Hilfer fractional differential equations. J. Math. Sci. 243, No 3 (2019), 347–357; DOI: 10.1007/s10958-019-04544-y.

    Article  MathSciNet  Google Scholar 

  6. S. Abbas and M. Benchohra, Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses. Appl. Math. Comput. 257 (2015), 190–198; DOI: 10.1016/j.amc.2014.06.073.

    MathSciNet  MATH  Google Scholar 

  7. S. Abbas, M. Benchohra, and J.J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations. Electron. J. Qual. Theory Differ. Equ. 2012, No 81 (2012), 1–15; DOI: 10.14232/ejqtde.2012.1.81.

    Article  MathSciNet  Google Scholar 

  8. S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory. Fract. Calc. Appl. Anal. 20, No 2 (2017), 384–398; DOI: 10.1515/fca-2017-0020; https://www.degruyter.com/view/journals/fca/20/2/fca.20.issue-2.xml/view/journals/fca/20/2/fca.20.issue-2.xml.

    Article  MathSciNet  Google Scholar 

  9. R. Agarwal, S. Hristova, and D. O’Regan, Non-instantaneous impulses in Caputo fractional differential equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 595–622; DOI: 10.1515/fca-2017-0032; https://www.degruyter.com/view/journals/fca/20/3/fca.20.issue-3.xml/view/journals/fca/20/3/fca.20.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  10. J. Banaś, D. O’Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order. J. Math. Anal. Appl. 345, No 1 (2008), 573–582; DOI: 10.1016/j.jmaa.2008.04.050.

    Article  MathSciNet  Google Scholar 

  11. M. Benchohra, Z. Bouteffal, J. Henderson, and S. Litimein, Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces. AMS Math. 5, No 1 (2019), 15–25; DOI: 10.3934/math.2020002.

    Article  Google Scholar 

  12. M. Benchohra, S. Litimein, and J.J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses. J. Fixed Point Theory Appl. 2019 (2019), # 21; DOI: 10.1007/s11784-019-0660-8.

  13. T.A. Burton, A fixed point theorem of Krasnoselskii. Appl. Math. Lett. 11 (1998), 85–88; DOI: 10.1016/S0893-9659(97)00138-9.

    Article  MathSciNet  Google Scholar 

  14. P.L. Butzer, A.A. Kilbas, J.J. Trujillo, Fractional Calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269 (2002), 1–27; DOI: 10.1016/S0022-247X(02)00001-X.

    Article  MathSciNet  Google Scholar 

  15. F. Chen, J.J. Nieto and Y. Zhou, Global attractivity for nonlinear fractional differential equations. Nonlinear Anal. 13, No 1 (2012), 287–298; DOI: 10.1016/j.nonrwa.2011.07.034.

    Article  MathSciNet  Google Scholar 

  16. F. Chen and Y. Zhou, Attractivity of fractional functional differential equations. Comput. Math. Appl. 62, No 3 (2011), 1359–1369; DOI: 10.1016/j.camwa.2011.03.062.

    Article  MathSciNet  Google Scholar 

  17. J. Deng and L. Ma, Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 23, No 6 (2010), 676–680; DOI: 10.1016/j.aml.2010.02.007.

    Article  MathSciNet  Google Scholar 

  18. Z. Fan, Existence and regularity of solutions for evolution equations with Riemann–Liouville fractional derivatives. Indagationes Math. 25, No 3 (2014), 516–524; DOI: 10.1016/j.indag.2014.01.002.

    Article  MathSciNet  Google Scholar 

  19. J.K. Hale, Theory of Function Differential Equations. Springer-Verlag, New York (1977).

    Book  Google Scholar 

  20. R. Hilfer, Applications of Fractional Calculus in Physics, World Sci., N. Jersey (2000).

    Book  Google Scholar 

  21. T.D. Ke, N.N. Quan, Finite-time attractivity for semilinear tempered fractional wave equations. Fract. Calc. Appl. Anal. 21, No 6 (2018), 1471–1492; DOI: 10.1515/fca-2018-0077; https://www.degruyter.com/view/journals/fca/21/6/fca.21.issue-6.xml/view/journals/fca/21/6/fca.21.issue-6.xml.

    Article  MathSciNet  Google Scholar 

  22. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  23. V. Kiryakova, Y. Luchko, Multiple Erdélyi-Kober integrals and derivatives as operators of generalized fractional calculus. In: Handbook of Fractional Calculus with Applications, Chap. 6, Vol. 1, De Gruyter, Berlin (2019), 127–158; DOI: 10.1515/9783110571622-006.

    Google Scholar 

  24. J. Losada, J.J. Nieto, and E. Pourhadi, On the attractivity of solutions for a class of multi-term fractional functional differential equations. J. Comput. Appl. Math. 312 (2017), 2–12; DOI: 10.1016/j.cam.2015.07.014.

    Article  MathSciNet  Google Scholar 

  25. E. de Oliveira, J. Vanterler da C. Sousa, Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations. Results Math. 73, No 3, (2018), # 111; DOI: 10.1007/s00025-018-0872-z.

    Google Scholar 

  26. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach. Sci. Publ., London - N. York (1993).

    MATH  Google Scholar 

  27. J. Vanterler da C. Sousa, K.D. Kucche, E. de Oliveira, On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator. Math. Meth. Appl. Sci. 42 (2019), 3021–3032; DOI: 10.1002/mma.5562.

    Article  MathSciNet  Google Scholar 

  28. J. Vanterler da C. Sousa, E. de Oliveira, On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91; DOI: 10.1016/j.cnsns.2018.01.005.

    Article  MathSciNet  Google Scholar 

  29. J. Vanterler da C. Sousa, E. de Oliveira, Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77 (2019), 305–311; DOI: 10.1016/j.cnsns.2019.05.003.

    Article  MathSciNet  Google Scholar 

  30. J. Vanterler da C. Sousa, E. de Oliveira, Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81 (2018), 50–56; DOI: 10.1016/j.aml.2018.01.016.

    Article  MathSciNet  Google Scholar 

  31. J. Vanterler da C. Sousa, E. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of Hilfer operator. Diff. Equ. & Appl. 11, No 1 (2019), 87–106; DOI: 10.7153/dea-2019-11-02.

    MathSciNet  MATH  Google Scholar 

  32. J. Vanterler da C. Sousa, K. D. Kucche, E. de Oliveira, Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 88 (2019), 73–80; DOI: 10.1016/j.aml.2018.08.013.

    Article  MathSciNet  Google Scholar 

  33. J. Vanterler da C. Sousa, E. de Oliveira, On the Ψ-fractional integral and applications. Comput. Appl. Math. 38 No 1, (2019) 4; https://doi.org/10.1007/s40314-019-0774-z.

    Article  MathSciNet  Google Scholar 

  34. J. Vanterler da C. Sousa, E. de Oliveira, On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 20 No 3, (2018), # 96; DOI: 10.1007/s11784-018-0587-5.

    Google Scholar 

  35. J. Vanterler da C. Sousa, E. de Oliveira, Fractional order pseudo-parabolic partial differential equations: Ulam–Hyers Stability. Bull. Braz. Math. Soc. 50 (2019), 481–496; DOI: 10.1007/s00574-018-0112-x.

    Article  MathSciNet  Google Scholar 

  36. J. Vanterler da C. Sousa, E. de Oliveira, On the stability of a hyperbolic fractional partial differential equation. Diff. Equ. Dyn. Sys. 2019 (2019),; DOI: 10.1007/s12591-019-00499-3.

  37. J. Vanterler da C. Sousa, E. de Oliveira, Capelas, Fractional order pseudoparabolic partial differential equation: Ulam–Hyers stability. Bull. Braz. Math. Soc., New Series 50, No 2 (2019), 481–496; DOI: 10.1007/s00574-018-0112-x.

    Article  MathSciNet  Google Scholar 

  38. H.M. Srivastava, D. Kumar, J. Singh, An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45 (2017), 192–204; DOI: 10.1016/j.apm.2016.12.008.

    Article  MathSciNet  Google Scholar 

  39. Z. Zhang, B. Liu, Existence of mild solutions for fractional evolution equations. J. Fract. Calc. Appl. 2, No 20 (2012), 1–10.

    Google Scholar 

  40. Y. Zhou, J.W. He, B. Ahmad, A. Alsaedi, Existence and attractivity for fractional evolution equations. Discrete Dyn. Nat. Soc., (2018) Art. ID 1070713, 9 pp.; DOI: 10.1155/2018/1070713.

    Google Scholar 

  41. Y. Zhou, Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. 75 (2018), 1–6; DOI: 10.1016/j.aml.2017.06.008.

    Article  MathSciNet  Google Scholar 

  42. Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21, No 3 (2018), 786–800; DOI: 10.1515/fca-2018-0041; https://www.degruyter.com/view/journals/fca/21/3/fca.21.issue-3.xml/view/journals/fca/21/3/fca.21.issue-3.xml.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaston M. N’Guérékata.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., Benchohra, M. & N’Guérékata, G.M. Attractivity for Differential Equations of Fractional order and ψ-Hilfer Type. Fract Calc Appl Anal 23, 1188–1207 (2020). https://doi.org/10.1515/fca-2020-0060

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0060

MSC 2010

Key Words and Phrases

Navigation