Skip to main content
Log in

On the Harmonic Extension Approach to Fractional Powers in Banach Spaces

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We show that fractional powers of general sectorial operators on Banach spaces can be obtained by the harmonic extension approach. Moreover, for the corresponding second order ordinary differential equation with incomplete data describing the harmonic extension we prove existence and uniqueness of a bounded solution (i.e., of the harmonic extension).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NIST Digital Library of Mathematical Functions. Version 1.0.22, visited 09.05.2019, http://dlmf.nist.gov/.

  2. W. Arendt, A. F. M. ter Elst, and M. Warma, Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Comm. Partial Differential Equations 43, No 1 (2018), 1–24.

    Article  MathSciNet  Google Scholar 

  3. A. V. Balakrishnan, An operational calculus for infinitesimal generators of semigroups. Trans. Amer. Math. Soc. 91 (1959), 330–353.

    MathSciNet  MATH  Google Scholar 

  4. A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them. Pacific J. Math. 10, No 2 (1960), 419–437.

    Article  MathSciNet  Google Scholar 

  5. S. Bochner, Diffusion equation and stochastic processes. Proc. Nat. Acad. Sciences 35 (1949), 368–370.

    Article  MathSciNet  Google Scholar 

  6. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differential Equations 32, No 8 (2007), 1245–1260.

    Article  MathSciNet  Google Scholar 

  7. R. deLaubenfels, Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomial bounded resolvents. J. Funct. Anal. 114, No 2 (1993), 348–394.

    Article  MathSciNet  Google Scholar 

  8. X.T. Duong and A. McIntosh, Functional calculi of second-order elliptic partial differential operators with bounded measurable coefficients. J. Geom. Anal. 6, No 2 (1996), 181–205.

    Article  MathSciNet  Google Scholar 

  9. K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations. Volume 194 of Grad. Texts in Math., Springer, New York-Berlin-Heidelberg (1999).

    MATH  Google Scholar 

  10. W. Feller, On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Comm. Sém. Mathém. Université de Lund, (1952), 73–81.

    Google Scholar 

  11. J. E. Galé, P. J. Miana, and P. R. Stinga, Extension problem and fractional operators: Semigroups and wave equations. J. Evol. Equ. 13, No 2 (2013), 343–368.

    Article  MathSciNet  Google Scholar 

  12. M. Haase, The Functional Calculus for Sectorial Operators. Ser. Operator Theory: Advances and Applications. Birkhäuser, Basel (2006).

    Google Scholar 

  13. M. Haase, Lectures on Functional Calculus. Lecture Notes of the 21st Internet Seminar (2018), https://www.math.uni-kiel.de/isem21/en/course/phase1/isem21-lectures-on-functional-calculus/isem21/en/course/phase1/isem21-lectures-on-functional-calculus.

    Google Scholar 

  14. E. Hille, Functional Analysis and Semigroups. Volume 31 of Amer. Math. Soc. Colloquium Publications, de Gruyter (1948).

  15. T. Kato, Note on fractional powers of linear operators. Proc. Japan Acad. 36 (1960), 94–96.

    MathSciNet  MATH  Google Scholar 

  16. T. Kato, Perturbation Theory for Linear Operators. Volume 132 of Grundlagen der mathematischen Wissenschaften, Springer 2nd Ed. (1980).

  17. H. Komatsu, Fractional powers of operators, III negative powers. J. Math. Soc. Japan 21 (1969), 205–220.

    MathSciNet  MATH  Google Scholar 

  18. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkhäuser Classics, Springer, Basel (1995).

    Book  Google Scholar 

  19. C. Martinez and M. Sanz, The Theory of Fractional Powers of Operators. North-Holland Mathematics Studies, Elsevier Sci. (2001).

    MATH  Google Scholar 

  20. A. McIntosh, Operators which have an H functional calculus. Miniconference on Operator Theory and Partial Differential Equations, 1986, 210–231.

    Google Scholar 

  21. J. Meichsner and C. Seifert, Fractional powers of non-negative operators in Banach spaces via the Dirichlet-to-Neumann operator. arXiv Preprint; https://arxiv.org/abs/1704.01876/abs/1704.01876(2017).

    Google Scholar 

  22. S. A. Molchanow and E. Ostrovskii, Symmetric stable processes as traces of degenerate diffusion processes. Theory Probab. Appl. 14, No 1 (1968), 128–131.

    Article  Google Scholar 

  23. E. Nelson, A functional calculus using singular Laplace integrals. Trans. Amer. Math. Soc. 88, No 2 (1958), 400–413.

    Article  MathSciNet  Google Scholar 

  24. R. S. Phillips, On the generation of semigroups of linear operators. Pacific J. Math. 2 (1952), 343–369.

    Article  MathSciNet  Google Scholar 

  25. R. L. Schilling, R. Song, and Z. Vondracek, Bernstein Functions: Theory and Applications. Volume 37 of de Gruyter Stud. Math., de Gruyter, 2nd Ed. (2012).

  26. P. R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional operators. Comm. Partial Differential Equations 35, No 11 (2010), 2092–2122.

    Article  MathSciNet  Google Scholar 

  27. G. Teschl, Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Math., American Mathematical Society, 10th Ed. (2011).

    MATH  Google Scholar 

  28. I. Wood, Maximal Lp-regularity for the Laplacian on Lipschitz domains. Math. Z. 255, No 4 (2007), 855–875.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Meichsner.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meichsner, J., Seifert, C. On the Harmonic Extension Approach to Fractional Powers in Banach Spaces. Fract Calc Appl Anal 23, 1054–1089 (2020). https://doi.org/10.1515/fca-2020-0055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2020-0055

MSC 2010

Key Words and Phrases

Navigation