Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exercise and immunometabolic regulation in cancer

Abstract

Unhealthful lifestyle factors, such as obesity, disrupt organismal homeostasis and accelerate cancer pathogenesis, partly through metabolic and immunological dysregulation. Exercise is a prototypical strategy that maintains and restores homeostasis at the organismal, tissue, cellular and molecular levels and can prevent or inhibit numerous disease conditions, including cancer. Here, we review unhealthful lifestyle factors that contribute to metabolic and immunological dysregulation and drive tumourigenesis, focusing on patient physiology (host)–tissue–tumour microenvironment interactions. We also discuss how exercise may influence distant tissue microenvironments, thereby improving tissue function through both metabolic and immunospecific pathways. Finally, we consider future directions that merit consideration in basic and clinical translational exercise studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exercise-induced protection against tissue-specific perturbations in organs involved in cancer regulation or prone to malignancy.
Fig. 2: Exercise-induced regulation of immunological and metabolic function in the TME.

Similar content being viewed by others

References

  1. Song, M. & Giovannucci, E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2, 1154–1161 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Song, M., Vogelstein, B., Giovannucci, E. L., Willett, W. C. & Tomasetti, C. Cancer prevention: molecular and epidemiologic consensus. Science 361, 1317–1318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwörer, S., Vardhana, S. A. & Thompson, C. B. Cancer metabolism drives a stromal regenerative response. Cell Metab. 29, 576–591 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Palucka, A. K. & Coussens, L. M. The basis of oncoimmunology. Cell 164, 1233–1247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on immunometabolism. Science 363, eaar3932 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5, 822–834 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Dyck, L. & Lynch, L. Cancer, obesity and immunometabolism: connecting the dots. Cancer Lett. 417, 11–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Turbitt, W. J., Buchta Rosean, C., Weber, K. S. & Norian, L. A. Obesity and CD8 T cell metabolism: implications for anti-tumor immunity and cancer immunotherapy outcomes. Immunol. Rev. 295, 203–219 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Drew, D. A., Cao, Y. & Chan, A. T. Aspirin and colorectal cancer: the promise of precision chemoprevention. Nat. Rev. Cancer 16, 173–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Demierre, M. F., Higgins, P. D., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nat. Rev. Cancer 5, 930–942 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Zaleska, M., Mozenska, O. & Bil, J. Statins use and cancer: an update. Future Oncol. 14, 1497–1509 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Barron, T. I., Connolly, R. M., Sharp, L., Bennett, K. & Visvanathan, K. Beta blockers and breast cancer mortality: a population-based study. J. Clin. Oncol. 29, 2635–2644 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Ganz, P. A., Habel, L. A., Weltzien, E. K., Caan, B. J. & Cole, S. W. Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: results from the LACE cohort. Breast Cancer Res. Treat. 129, 549–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pernicova, I. & Korbonits, M. Metformin: mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143–156 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016). Meta-analysis showing that high versus low levels of leisure-time physical activity are associated with lower risk of 13 cancers.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Friedenreich, C. M., Neilson, H. K., Farris, M. S. & Courneya, K. S. Physical activity and cancer outcomes: a precision medicine approach. Clin. Cancer Res. 22, 4766–4775 (2016). Systematic review showing that postdiagnosis physical activity is associated with lower risks of cancer recurrence or progression across breast, prostate and colorectal cancers.

    Article  CAS  PubMed  Google Scholar 

  25. Ashcraft, K. A., Peace, R. M., Betof, A. S., Dewhirst, M. W. & Jones, L. W. Efficacy and mechanisms of aerobic exercise on cancer initiation, progression, and metastasis: a critical systematic review of in vivo preclinical data. Cancer Res. 76, 4032–4050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koelwyn, G. J., Quail, D. F., Zhang, X., White, R. M. & Jones, L. W. Exercise-dependent regulation of the tumour microenvironment. Nat. Rev. Cancer 17, 620–632 (2017).

    Article  PubMed  CAS  Google Scholar 

  27. Golemis, E. A. et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev. 32, 868–902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quail, D. F. & Dannenberg, A. J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 15, 139–154 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hopkins, B. D., Goncalves, M. D. & Cantley, L. C. Obesity and cancer mechanisms: cancer metabolism. J. Clin. Oncol. 34, 4277–4283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Font-Burgada, J., Sun, B. & Karin, M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 23, 48–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Iyengar, N. M., Gucalp, A., Dannenberg, A. J. & Hudis, C. A. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J. Clin. Oncol. 34, 4270–4276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Howe, L. R., Subbaramaiah, K., Hudis, C. A. & Dannenberg, A. J. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin. Cancer Res. 19, 6074–6083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clements, V. K. et al. Frontline science: high fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. J. Leukoc. Biol. 103, 395–407 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Baek, A. E. et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat. Commun. 8, 864 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang, C. et al. STAT3 activation-induced fatty acid oxidation in CD8+ T effector cells is critical for obesity-promoted breast tumour growth. Cell Metab. 31, 148–161.e145 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Krall, J. A. et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med. 10, eaan3464 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Koelwyn, G.J. et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med. https://doi.org/10.1038/s41591-020-0964-7 (2020).

  40. Meijers, W. C. et al. Heart failure stimulates tumor growth by circulating factors. Circulation 138, 678–691 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Hasin, T. et al. Heart failure after myocardial infarction is associated with increased risk of cancer. J. Am. Coll. Cardiol. 68, 265–271 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hasin, T. et al. Patients with heart failure have an increased risk of incident cancer. J. Am. Coll. Cardiol. 62, 881–886 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Peake, J. M. et al. Modulating exercise-induced hormesis: does less equal more? J. Appl. Physiol. 119, 172–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Egan, B., Hawley, J. A. & Zierath, J. R. SnapShot: exercise metabolism. Cell Metab. 24, 342–342.e341 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Koelwyn, G. J., Wennerberg, E., Demaria, S. & Jones, L. W. Exercise in regulation of inflammation-immune axis function in cancer initiation and progression. Oncol. (Williston Park) 29, 908–920 (2015). 922.

    Google Scholar 

  47. Murphy, R. M., Watt, M. J. & Febbraio, M. A. Metabolic communication during exercise. Nat. Metab. https://doi.org/10.1038/s42255-020-0258-x (2020).

  48. Joyner, M. J. & Dempsey, J. A. Physiological redundancy and the integrative responses to exercise. Cold Spring Harb. Perspect. Med. 8, a029660 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jones, L. W., Eves, N. D., Haykowsky, M., Freedland, S. J. & Mackey, J. R. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol. 10, 598–605 (2009).

    Article  PubMed  Google Scholar 

  50. Neufer, P. D. et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 22, 4–11 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Severinsen, M. C. K. & Pedersen, B. K. Muscle-organ crosstalk: the emerging roles of myokines. Endocr. Rev. 41, 594–609 (2020).

    Article  PubMed Central  Google Scholar 

  52. Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Gehrke, N. et al. Voluntary exercise in mice fed an obesogenic diet alters the hepatic immune phenotype and improves metabolic parameters: an animal model of life style intervention in NAFLD. Sci. Rep. 9, 4007 (2019). Preclinical study showing that exercise protects against diet-induced NAFLD in mice and improves liver-specific metabolic and inflammatory alterations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Olén, O. et al. Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. Lancet 395, 123–131 (2020).

    Article  PubMed  Google Scholar 

  57. Qin, L. et al. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 8, 7391–7404 (2017). Preclinical study showing exercise protection from chronic colitis alongside decreases in colon-specific inflammation.

    Article  PubMed  Google Scholar 

  58. Frodermann, V. et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nat. Med. 25, 1761–1771 (2019). Study showing that exercise in mice decreases bone marrow haematopoiesis via leptin signalling and epigenetic alterations in bone marrow hematopoietic progenitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, W. C. et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc. Natl Acad. Sci. USA 111, 4221–4226 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shipp, C., Speigl, L., Janssen, N., Martens, A. & Pawelec, G. A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell. Mol. Life Sci. 73, 4043–4061 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Stanford, K. I. & Goodyear, L. J. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv. Physiol. Educ. 38, 308–314 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bigley, A. B. & Simpson, R. J. NK cells and exercise: implications for cancer immunotherapy and survivorship. Discov. Med. 19, 433–445 (2015).

    PubMed  Google Scholar 

  63. Timmerman, K. L., Flynn, M. G., Coen, P. M., Markofski, M. M. & Pence, B. D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J. Leukoc. Biol. 84, 1271–1278 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Peters, C., Lötzerich, H., Niemeir, B., Schüle, K. & Uhlenbruck, G. Exercise, cancer and the immune response of monocytes. Anticancer Res. 15, 175–179 (1995).

    CAS  PubMed  Google Scholar 

  65. Fairey, A. S. et al. Randomized controlled trial of exercise and blood immune function in postmenopausal breast cancer survivors. J. Appl. Physiol. 98, 1534–1540 (2005).

    Article  PubMed  Google Scholar 

  66. Irwin, M. L. et al. Randomized controlled trial of aerobic exercise on insulin and insulin-like growth factors in breast cancer survivors: the Yale Exercise and Survivorship study. Cancer Epidemiol. Biomark. Prev. 18, 306–313 (2009).

    Article  CAS  Google Scholar 

  67. Fairey, A. S. et al. Effects of exercise training on fasting insulin, insulin resistance, insulin-like growth factors, and insulin-like growth factor binding proteins in postmenopausal breast cancer survivors: a randomized controlled trial. Cancer Epidemiol. Biomark. Prev. 12, 721–727 (2003).

    CAS  Google Scholar 

  68. Zhu, Z. et al. Effect of nonmotorized wheel running on mammary carcinogenesis: circulating biomarkers, cellular processes, and molecular mechanisms in rats. Cancer Epidemiol. Biomark. Prev. 17, 1920–1929 (2008).

    Article  CAS  Google Scholar 

  69. Xie, L. et al. Effects of dietary calorie restriction or exercise on the PI3K and Ras signaling pathways in the skin of mice. J. Biol. Chem. 282, 28025–28035 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Aveseh, M., Nikooie, R. & Aminaie, M. Exercise-induced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice. J. Physiol. (Lond.) 593, 2635–2648 (2015).

    Article  CAS  Google Scholar 

  71. Lu, M. et al. Exercise inhibits tumor growth and central carbon metabolism in patient-derived xenograft models of colorectal cancer. Cancer Metab. 6, 14 (2018). Study showing differential sensitivity to exercise across PDX models, occurring in conjunction with whole-tumour metabolic alterations.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Glass, O. K. et al. Differential response to exercise in claudin-low breast cancer. Oncotarget 8, 100989–101004 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zielinski, M. R., Muenchow, M., Wallig, M. A., Horn, P. L. & Woods, J. A. Exercise delays allogeneic tumour growth and reduces intratumoural inflammation and vascularization. J. Appl. Physiol. 96, 2249–2256 (2004).

    Article  PubMed  Google Scholar 

  74. Almeida, P. W. et al. Swim training suppresses tumour growth in mice. J. Appl. Physiol. 107, 261–265 (2009).

    Article  PubMed  Google Scholar 

  75. Pedersen, L. et al. Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab. 23, 554–562 (2016). Study showing that exercise inhibits tumour growth across multiple preclinical models, including the B16 mouse melanoma model, in a manner dependent on NK-cell tumour infiltration.

    Article  CAS  PubMed  Google Scholar 

  76. Hagar, A. et al. Endurance training slows breast tumor growth in mice by suppressing Treg cells recruitment to tumors. BMC Cancer 19, 536 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sio, A. et al. Dysregulated hematopoiesis caused by mammary cancer is associated with epigenetic changes and hox gene expression in hematopoietic cells. Cancer Res. 73, 5892–5904 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Wennerberg, E. et al. Exercise reduces immune suppression and breast cancer progression in a preclinical model. Oncotarget 11, 452–461 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zois, C. E. & Harris, A. L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med. (Berl.) 94, 137–154 (2016).

    Article  CAS  Google Scholar 

  80. Dauer, P. & Lengyel, E. New roles for glycogen in tumor progression. Trends Cancer 5, 396–399 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Vande Voorde, J. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Day, C. P., Merlino, G. & Van Dyke, T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163, 39–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science 344, 921–925 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Betof, A. S. et al. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J. Natl Cancer Inst. 107, djv040 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Courneya, K. S. et al. The Colon Health and Life-Long Exercise Change trial: a randomized trial of the National Cancer Institute of Canada Clinical Trials Group. Curr. Oncol. 15, 279–285 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Newton, R. U. et al. Intense Exercise for Survival among Men with Metastatic Castrate-Resistant Prostate Cancer (INTERVAL-GAP4): a multicentre, randomised, controlled phase III study protocol. BMJ Open 8, e022899 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Iyengar, N.M. & Jones, L.W. Development of exercise as interception therapy for cancer: a review. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.2585 (2019).

  91. McTiernan, A. et al. Effect of a 12-month exercise intervention on patterns of cellular proliferation in colonic crypts: a randomized controlled trial. Cancer Epidemiol. Biomark. Prev. 15, 1588–1597 (2006).

    Article  CAS  Google Scholar 

  92. Campbell, K. L. et al. Effect of a 12-month exercise intervention on the apoptotic regulating proteins Bax and Bcl-2 in colon crypts: a randomized controlled trial. Cancer Epidemiol. Biomark. Prev. 16, 1767–1774 (2007).

    Article  CAS  Google Scholar 

  93. Ligibel, J. A. et al. Impact of a pre-operative exercise intervention on breast cancer proliferation and gene expression: results from the Pre-Operative Health and Body (PreHAB) Study. Clin. Cancer Res. 25, 5398–5406 (2019). Window-of-opportunity trial showing enrichment in intratumoural immunological and inflammation-associated pathways after short-term exercise in treatment-naive patients with operable breast cancer.

    Article  CAS  PubMed  Google Scholar 

  94. Sims, A. H., Leggate, M. & Campbell, A. Exercise window trial in newly diagnosed breast cancer-letter. Clin. Cancer Res. 25, 7609–7610 (2019).

    Article  PubMed  Google Scholar 

  95. Hu, B. C., HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  CAS  Google Scholar 

  96. Shilo, S., Rossman, H. & Segal, E. Axes of a revolution: challenges and promises of big data in healthcare. Nat. Med. 26, 29–38 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.J.K. is supported by the Louis and Rachel Rudin Foundation. X.Z. and T.T. are supported in part by Josie Robertson, Rita Allen and V Foundation Scholarships, and the Stanley and Fiona Druckenmiller Center for Lung Cancer Research at MSK. A.S. is supported in part by funding from the National Cancer Institute (DP2 CA225212, U54 CA209975), the Josie Robertson Foundation and the Cancer Research Institute. L.W.J. is supported in part by funding from the National Cancer Institute and AKTIV Against Cancer. This work was supported by the Memorial Sloan Kettering Cancer Center Support Grant/Core Grant (P30 CA008748).

Author information

Authors and Affiliations

Authors

Contributions

G.J.K. and L.W.J. researched data for the article, made substantial contributions to the discussion of content and wrote the manuscript. X.Z., T.T. and A.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Lee W. Jones.

Ethics declarations

Competing interests

L.W.J. owns stock in Pacylex, Inc. G.J.K., X.Z., T.T. and A.S. declare no competing interests.

Additional information

Peer review information Primary Handling Editors: George Caputa; Elena Bellafante.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koelwyn, G.J., Zhuang, X., Tammela, T. et al. Exercise and immunometabolic regulation in cancer. Nat Metab 2, 849–857 (2020). https://doi.org/10.1038/s42255-020-00277-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-020-00277-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer