Skip to main content

Advertisement

Log in

Averaged current mode control for maximum power point tracking in high-gain photovoltaic applications

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Efficient extraction of the maximum power from photovoltaic (PV) systems under inherently variable weather conditions is a key issue that has been tackled in recent years. Maximum power extraction techniques are relevant for increasing the penetration of PV systems into electric systems. This paper presents an averaged current mode control strategy as a maximum power extraction technique in a photovoltaic high step-up dc–dc converter, which can be applied to dc microgrids or ac networks through power inverters. Since the generated power of a photovoltaic system is related to the terminal voltage, power extraction is given through the regulation of the converter’s input voltage. For this purpose, in the proposed averaged current mode control, the inner current loop uses the inductor current as a feedback signal, which improves the dynamic behavior of the converter with a simple gain. Meanwhile, the outer voltage loop is built with a proportional-integrative controller for regulation. The converter and control strategy are able to track rapid irradiance changes. They are also able to maintain the photovoltaic voltage regulation under dc bus voltage variations. The performance of the proposed control scheme is validated experimentally with a 100 W converter prototype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dubey, S., Narotam-Sarvaiya, J., Seshadri, B.: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world—a review. Energy Procedia 33, 311–321 (2013)

    Article  Google Scholar 

  2. Zhang, M., Chen, Z., Wei, L.: An immune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions. Energies 12(16), 3083 (2019)

    Article  Google Scholar 

  3. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  4. Gomes-de-Brito, M.A., Galotto, L., Poltronieri-Sampaio, L., de Azevedo-e-Melo, G., Canesin, C.A.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3), 1156–1167 (2013)

    Article  Google Scholar 

  5. Bendib, B., Belmili, H., Krim, F.: A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 45, 637–648 (2015)

    Article  Google Scholar 

  6. Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M.: A fast current-based MPPT technique employing sliding mode control. IEEE Trans. Ind. Electron. 60(3), 1168–1178 (2013)

    Article  Google Scholar 

  7. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963–973 (2005)

    Article  Google Scholar 

  8. Xiao, W., Dunford, W.G., Palmer, P.R., Capel, A.: Application of centered differentiation and steepest descent to maximum power point tracking. IEEE Trans. Ind. Electron. 54(5), 2539–2549 (2007)

    Article  Google Scholar 

  9. Baekhoej Kjaer, S., Pedersen, J.K., Blaabjerg, F.: A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292–1306 (2005)

    Article  Google Scholar 

  10. Petrone, G., Spagnuolo, G., Vitelli, M.: An analog technique for distributed MPPT PV applications. IEEE Trans. Ind. Electron. 59(12), 4713–4722 (2012)

    Article  Google Scholar 

  11. Espinoza-Trejo, D.R., Bárcenas-Bárcenas, E., Campos-Delgado, D.U., De Angelo, C.H.: Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems. IEEE Trans. Ind. Electron. 62(6), 3499–3507 (2015)

    Google Scholar 

  12. Tchoketch, G.F., Larbes, C., Ilinca, A., Obeidi, T., Tchoketch, S.: Study of the intelligent behaviour of a maximum photovoltaic energy tracking fuzzy controller. Energies 11(12), 3263 (2018)

    Article  Google Scholar 

  13. Gil-Antonio, L., Saldivar, B., Portillo-Rodríguez, O., Ávila-Vilchis, J.C., Martínez-Rodríguez, P.R.: Flatness-based control for the maximum power point tracking in a photovoltaic system. Energies 12(10), 1843 (2019)

    Article  Google Scholar 

  14. Ali, K., Khan, L., Khan, Q., Ulla, S., Ahmad, S., Mumtaz, S., Wahab, F., Naghmash, : Robust integral backstepping based nonlinear MPPT control for a PV system. Energies 12(16), 3180 (2019)

    Article  Google Scholar 

  15. Bani-Salim, M., Hayajneh, H.S., Mohammed, A., Ozcelik, S.: Robust direct adaptative controller design for photovoltaic maximum power point tracking application. Energies 12(16), 3182 (2019)

    Article  Google Scholar 

  16. Li, W., Xiang, X., Li, C., Li, W., He, X.: Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system. IEEE Trans. Power Electron. 28(1), 300–313 (2013)

    Article  Google Scholar 

  17. Choi, H., Ciobotaru, M., Jang, M., Agelidis, V.G.: Performance of medium-voltage DC-bus PV system architecture utilizing high-gain DC–DC converter. IEEE Trans. Sustain. Energy 6(2), 464–473 (2015)

    Article  Google Scholar 

  18. Wong, Y.S., Chen, J.F., Liu, K.B., Hsieh, Y.P.: A novel high step-up DC-DC converter with coupled inductor and switched clamp capacitor techniques for photovoltaic systems. Energies 10(3), 378 (2017)

    Article  Google Scholar 

  19. Frivaldsky, M., Hanko, B., Prazenica, M., Morgos, J.: High gain boost interleaved converters with coupled inductors and with demagnetizing circuits. Energies 11(1), 130 (2018)

    Article  Google Scholar 

  20. Altin, N., Ozturk, E.: Maximum power point tracking quadratic boost converter for photovoltaic systems. In: IEEE Electronics, Computers and Artificial Intelligence International Conference, pp 35–38 (2016)

  21. Ozdemir, S., Altin, N., Sefa, I.: Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter. Int. J. Hydrog. Energy 42(28), 17748–17759 (2017)

    Article  Google Scholar 

  22. Yuang-Shung, L., Tzu-Han, C., Ling-Chia, Y., Hsin-Wei, H.: Quadratic high gain boost converter for grid-tie PV system application. In: 1st International Future Energy Electronics Conference, pp 382–387 (2013)

  23. Amir, A., Seng-Che, H., Elkhateb, A., Abd-Rahim, N.: Comparative analysis of high voltage gain DC–DC converter topologies for photovoltaic systems. Renew. Energy 136, 1147–1163 (2019)

    Article  Google Scholar 

  24. Boroyevich, D., Cvetkovic, I., Dong, D., Burgos, R., Wang, F., Lee, F.: Future electronic power distribution systems - a contemplative view. In:12th International Conference on Optimization of Electrical and Electronic Equipment, pp 1369–1380 (2010)

  25. Ahmadi, R., Ferdowsi, M.: Improving the performance of a line regulating converter in a converter-dominated dc microgrid system. IEEE Trans. Smart Grid 5(5), 2553–2563 (2014)

    Article  Google Scholar 

  26. Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)

    Article  Google Scholar 

  27. Loera-Palomo, R., Morales-Saldaña, J.A.: Family of quadratic step-up dc–dc converters based on noncascading structures. IET Power Electron. 8(5), 793–801 (2015)

    Article  Google Scholar 

  28. Ismail, E.H., Al-Saffar, M.A., Sabzali, A.J., Fardoun, A.A.: A family of single-switch PWM converters with high step-up convertion ratio. IEEE Trans. Circuits Syst. 55(4), 1159–1171 (2008)

    Article  MathSciNet  Google Scholar 

  29. Carbajal-Gutiérrez, E.E., Morales-Saldaña, J.A., Leyva-Ramos, J.: Modeling of a single-switch quadratic buck converter. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1451–1457 (2005)

    Article  Google Scholar 

  30. Loera-Palomo, R., Morales-Saldaña, J.A., Leyva-Ramos, J.: Signal flow graphs for modelling of switching converters with reduced redundant power processing. IET Power Electron. 5(7), 1008–1016 (2012)

    Article  Google Scholar 

  31. Viinamaki, J., Jokipii, J., Messo, T., Suntio, T., Sitbon, M., Kuperman, A.: Comprehensive dynamic analysis of photovoltaic generator interfacing dc–dc boost power stage. IET Renew. Power Gener. 9(4), 306–314 (2015)

    Article  Google Scholar 

  32. Puukko, J., Nousiainen, L., Maki, A., Messo, T., Huusari, J., Suntio, T.: Photovoltaic generator as an input source for power electronic converters. In: 15th International Power Electronics and Motion Control Conference, pp 1–8 (2012)

Download references

Acknowledgements

This research was supported by CONACYT, México, under project 1982 of Cátedras CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Loera-Palomo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Rosa Romo, D., Loera-Palomo, R., Rivero, M. et al. Averaged current mode control for maximum power point tracking in high-gain photovoltaic applications. J. Power Electron. 20, 1650–1661 (2020). https://doi.org/10.1007/s43236-020-00144-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00144-1

Keywords

Navigation