Skip to main content
Log in

Malformations as a Violation of the Fractal Structure of the Circulatory System of an Organism

  • TECHNIQUE OF MEDICAL MONITORING AND VISUALIZATION
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Mathematical models are described in which the circulatory system of an organism is considered as a multifractal object. The solution to two problems is given. The first one is associated with the normal state of the body’s life support system, namely, to heat transfer in human skin. The equations of hydrodynamics and heat transfer are the basis of the model. Quantitative results of calculating heat fluxes in three layers of the dermis are presented. The second problem is a violation of fractality due to the presence of arteriovenous malformation in the vascular system of the brain. Blood flow modeling in the presence of malformation was performed using the SolidWorks 2017 Flow Simulation software product. Data on blood velocity and blood flow in vessels for various cases of malformation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. S. Kholodov, in Computer Models and Progress in Medicine, Ed. by O. M. Belotserkovskii and A. S. Kholodov (Nauka, Moscow, 2001), pp. 123–163 [in Russian].

    Google Scholar 

  2. S. S. Simakov and A. S. Kholodov, Math. Models Comput. Simul. 1 (2), 283 (2009).

    Article  MathSciNet  Google Scholar 

  3. A. S. Kholodov and S. S. Simakov, J. Biomech. 39 (Suppl. 1), 401 (2006).

    Article  Google Scholar 

  4. M. Ursino and C. A. Lodi, J. Appl. Physiol. 82 (4), 1256 (1997).

    Article  Google Scholar 

  5. A. P. Baranov and M. F. Klimenok, Medical and Biological Physics, 2nd ed. (Vitebsk Gos. Med. Univ., Vitebsk, 2010) [in Russian].

    Google Scholar 

  6. Yu. S. Semenov and A. I. D’yachenko, Tr. Mosk. Fiz.-Tekn. Inst. 6 (3), 102 (2014).

    Google Scholar 

  7. I. B. Petrov, Tr. Mosk. Fiz.-Tekn. Inst. 1 (1), 5 (2009).

    Google Scholar 

  8. K. D. Costa, P. J. Hunter, J. M. Rogers, J. M. Guccione, L. K. Waldmen, and A. D. McCulloch, J. Biomech. Eng. 118 (4), 452 (1996). https://doi.org/10.1115/1.2796031

    Article  Google Scholar 

  9. I. V. Ashmetov, A. Ya. Bunicheva, S. I. Mukhin, T. V. Sokolova, N. V. Sosnin, and A. P. Favorskii, The Computer and the Brain. New Technology (Nauka, Moscow, 2005), pp. 321–337 [in Russian].

    Google Scholar 

  10. Y. A. Gataulin, D. K. Zaitsev, E. M. Smirnov, and A. D. Yukhnev, Russ. J. Biomech. 23 (1), 58 (2019). https://doi.org/10.15593/RJBiomech/2019.1.07

    Article  Google Scholar 

  11. Y. A. Gataulin, A. D. Yukhnev, D. K. Zaitsev, E. M. Smirnov, V. P. Kulikov, and R. I. Kirsanov, J. Phys.: Conf. Ser. 1135, 012089 (2018). https://doi.org/10.1088/1742-6596/1135/1/012089

    Article  Google Scholar 

  12. Y. A. Gataulin, D. K. Zaitsev, E. M. Smirnov, and A. D. Yukhnev, J. Phys. Math. 3 (1), 1 (2017). https://doi.org/10.1016/j.spjpm.2017.02.001

    Article  Google Scholar 

  13. W. L. Young, T. Gao, G. J. Hademenos, and T. F. Massoud, Intracranial Arteriovenous Malformation (Informa Healthcare, USA, 1997), pp. 49–70.

    Google Scholar 

  14. R. F. Spetzler, C. B. Wilson, P. Weinstein, M. Mehdorn, J. Townsend, and D. Telles, Clin. Neurosurg. 25, 651 (1978).

    Article  Google Scholar 

  15. C. M. Quick, T. Hashimoto, and W. L. Young, Neurol. Res. 23, 641 (2001).

    Article  Google Scholar 

  16. V. S. Panuntsev, V. G. Voronov, P. I. Nikitin, V. A. Aliev, R. R. Bairamov, I. M. Bukhaev, R. R. Gafurov, N. V. Dryagina, G. K. Panuntsev, S. D. Radzhabov, O. Yu. Razmologova, L. V. Rozhchenko, and V. B. Semenyutin, Modern Concepts of Cerebral Arteriovenous Malformations (Sintez Buk, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  17. A. Mack, H. Czempiel, H.-J. Kreiner, G. Dürr, and B. Wowra, Med. Phys. 29 (4), 561 (2002). https://doi.org/10.1118/1.1463062

    Article  Google Scholar 

  18. Espinacos convertidas en celulas del Corazon, https://www.taringa.net/.

  19. https://www.mayoclinic.org/.

Download references

ACKNOWLEDGMENTS

The authors thank Head of the Laboratory of Cerebral Pathology of the Polenov Neurosurgical Institute V.B. Semenyutin for the information provided.

Author information

Authors and Affiliations

Authors

Contributions

V.I. Antonov came up with the concept of research and analyzed the heat transfer in the skin. P. Efremov developed the model of malformation.

Corresponding author

Correspondence to V. Antonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Shipounova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, V., Efremov, P. Malformations as a Violation of the Fractal Structure of the Circulatory System of an Organism. Tech. Phys. 65, 1446–1449 (2020). https://doi.org/10.1134/S1063784220090042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090042

Navigation