Skip to main content
Log in

Charge Transfer by Polarons in a Homogeneous Poly G/Poly C-Chain Subjected to a Constant Electric Field in Terms of the Peyrard–Bishop–Holstein Model

  • BIOPOLYMERS DYNAMICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Numerical experiments based on the Peyrard–Bishop–Holstein model have been conducted to demonstrate the possibility of charge transfer by polarons in the homogeneous Poly G/Poly C-chain of DNA subjected to a constant electric field. It has been shown that a polaron in this model can travel large distances along the chain with a constant velocity if the electric field is weak. The charge motion ceases to be uniform with an increase in field strength: the charge starts executing Bloch oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Peyrard, S. Cuesta-Lopez, and G. James, Nonlinearity 21, 91 (2008). https://doi.org/10.1088/0951-7715/21/6/T02

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Zamora-Sillero, A. V. Shapovalov, and F. J. Esteban, Phys. Rev. E 76, 066603 (2007). https://doi.org/10.1103/PhysRevE.76.066603

    Article  ADS  Google Scholar 

  3. E. B. Starikov, Philos. Mag. 85, 3435 (2005). https://doi.org/10.1080/14786430500157110

    Article  ADS  Google Scholar 

  4. P. Maniadis, G. Kalosakas, K. O. Rasmussen, and A. R. Bishop, Phys. Rev. E 72, 021912 (2005). https://doi.org/10.1103/PhysRevE.72.021912

    Article  ADS  Google Scholar 

  5. S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 65, 061905 (2002). https://doi.org/10.1103/PhysRevE.65.061905

    Article  ADS  Google Scholar 

  6. A. S. Shigaev, O. A. Ponomarev, and V. D. Lakhno, Chem. Phys. Lett. 513, 276 (2011). https://doi.org/10.1016/j.cplett.2011.07.080

    Article  ADS  Google Scholar 

  7. J. A. Berashevich, A. D. Bookatz, and T. Chakraborty, J. Phys.: Condens. Matter. 20, 035207 (2008). https://doi.org/10.1088/0953-8984/20/03/035207

    Article  ADS  Google Scholar 

  8. E. Diaz, R. P. A. Lima, and F. Dominguez-Adame, Phys. Rev. B 78, 134303 (2008). https://doi.org/10.1103/PhysRevB.78.134303

    Article  ADS  Google Scholar 

  9. Modern Methods for Theoretical Physical Chemistry of Biopolymers, Ed. by E. B. Starikov, J. P. Lewis, and Shigenori Tanaka (Elsevier, Amsterdam, 2006).

  10. Long-Range Charge Transfer in DNA I, Ed. by G. B. Schuster (Springer, Heidelberg, 2004). https://doi.org/10.1007/b84245

  11. Long-Range Charge Transfer in DNA II, Ed. by G. B. Schuster (Springer, Heidelberg, 2004). https://doi.org/10.1007/b14032

  12. H. W. Fink and C. Schönenberger, Nature 398, 407 (1999).

    Article  ADS  Google Scholar 

  13. N. T. Bagraev, A. L. Chernev, L. E. Klyachkin, A. M. Malyarenko, A. K. Emel’yanov, and M. V. Dubina, Semiconductors 50 (9), 1208 (2016). https://doi.org/10.1134/S1063782616090037

    Article  ADS  Google Scholar 

  14. S. V. Rakhmanova and E. M. Conwell, J. Phys. Chem. B 105, 2056 (2001). https://doi.org/10.1021/jp0036285

    Article  Google Scholar 

  15. V. D. Lakhno, Int. J. Quantum Chem. 108, 1970 (2008). https://doi.org/10.1002/qua.21717

    Article  ADS  Google Scholar 

  16. Nanobioelectronics—for Electronics, Biology and Medicine, Ed. by A. Offenhausser and R. Rinaldi (Springer, Heidelberg, 2009). https://doi.org/10.1007/978-0-387-09459-5

  17. R. G. Eudres, D. L. Cox, and R. R. P. Singh, Rev. Mod. Phys. 76, 195 (2004). https://doi.org/10.1103/RevModPhys.76.195

    Article  ADS  Google Scholar 

  18. M. Taniguchi and T. Kawai, Physica E 33, 1 (2006). https://doi.org/10.1016/j.physe.2006.01.005

    Article  ADS  Google Scholar 

  19. D. Porath, G. Cuniberti, and R. Di Felice, Top. Curr. Chem. 237, 183 (2004). https://doi.org/10.1007/b94477

    Article  Google Scholar 

  20. V. D. Lakhno, J. Biol. Phys. 26, 133 (2000). https://doi.org/10.1023/A:1005275211233

    Article  Google Scholar 

  21. E. M. Conwell and S. V. Rakhmanova, Proc. Natl. Acad. Sci. U. S. A. 97, 4556 (2000). https://doi.org/10.1073/pnas.050074497

    Article  ADS  Google Scholar 

  22. N. S. Fialko and V. D. Lakhno, Phys. Lett. A 278, 108 (2000). https://doi.org/10.1016/S0375-9601(00)00755-6

    Article  ADS  Google Scholar 

  23. V. D. Lakhno and A. N. Korshunova, Math. Biol. Bioinf. 5, 1 (2010). https://doi.org/10.17537/2010.5.1

    Article  Google Scholar 

  24. A. N. Korshunova and V. D. Lakhno, Tech. Phys. 63 (9), 1270 (2018). https://doi.org/10.1134/S1063784218090086

    Article  Google Scholar 

  25. T. Holstein, Ann. Phys. 8, 325 (1959). https://doi.org/10.1016/0003-4916(59)90002-8

    Article  ADS  Google Scholar 

  26. T. Holstein, Ann. Phys. 8, 343 (1959). https://doi.org/10.1016/0003-4916(59)90003-X

    Article  ADS  Google Scholar 

  27. A. N. Korshunova and V. D. Lakhno, Physica E 60, 206 (2014). https://doi.org/10.1016/j.physe.2014.02.025

    Article  ADS  Google Scholar 

  28. V. D. Lakhno and A. N. Korshunova, Eur. Phys. J. B 55, 85 (2007). https://doi.org/10.1140/epjb/e2007-00045-3

    Article  ADS  Google Scholar 

  29. V. D. Lakhno and A. N. Korshunova, Eur. Phys. J. B 79, 147 (2011). https://doi.org/10.1140/epjb/e2010-10565-2

    Article  ADS  Google Scholar 

  30. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989). https://doi.org/10.1103/PhysRevLett.62.2755

    Article  ADS  Google Scholar 

  31. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47, 684 (1993). https://doi.org/10.1103/PhysRevE.47.684

    Article  ADS  Google Scholar 

  32. M. Peyrard, Europhys. Lett. 44, 271 (1998). https://doi.org/10.1209/epl/i1998-00469-9

    Article  ADS  Google Scholar 

  33. C. H. Choi, G. Kalosakas, K. O. Rasmussen, M. Hiromura, A. R. Bishop, and A. Usheva, Nucleic Acids Res. 32 (4), 1584 (2004). https://doi.org/10.1093/nar/gkh335

    Article  Google Scholar 

  34. A. N. Korshunova and V. D. Lakhno, Mat. Biol. Bioinform. 11 (2), 141 (2016). https://doi.org/10.17537/2016.11.141

    Article  Google Scholar 

  35. A. N. Korshunova and V. D. Lakhno, Mat. Biol. Bioinform. 12 (1), 204 (2017). https://doi.org/10.17537/2017.12.204

    Article  Google Scholar 

  36. A. N. Korshunova and V. D. Lakhno, Mat. Biol. Bioinform. 13 (2), 534 (2018). https://doi.org/10.17537/2018.13.534

    Article  Google Scholar 

  37. V. D. Lakhno and A. P. Chetverikov, Mat. Biol. Bioinform. 9 (1), 4 (2014). https://doi.org/10.17537/2014.9.4

    Article  Google Scholar 

  38. A. P. Chetverikov, W. Ebeling, V. D. Lakhno, A. S. Shigaev, and M. G. Velarde, Eur. Phys. J. 89, 101 (2016). https://doi.org/10.1140/epjb/e2016-60949-1

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the computational resources of the Joint SuperComputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Korshunova or V. D. Lakhno.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunova, A.N., Lakhno, V.D. Charge Transfer by Polarons in a Homogeneous Poly G/Poly C-Chain Subjected to a Constant Electric Field in Terms of the Peyrard–Bishop–Holstein Model. Tech. Phys. 65, 1467–1474 (2020). https://doi.org/10.1134/S1063784220090200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090200

Navigation