Skip to main content

Advertisement

Log in

Surface and Groundwater Quality Evolution in the Agrio and Guadiamar Rivers After the Aznalcóllar Mine Spill (SW Spain): Lessons Learned

Erkenntnisse aus der Evaluierung der Oberflächen und Grundwasserqualität des Agriano- und des Guadiamar Flusses nach dem Schlammausbruch aus dem Bergbau Aznalcóllar in Südwestspanien

Evolución de la calidad de las aguas superficiales y subterráneas en los ríos Agrio y Guadiamar después del derrame de la mina de Aznalcóllar (SW España): lecciones aprendidas

Aznalcóllar矿(西班牙西南)溃坝后Agrio河和Guadiamar河流域地表和地下水演化:事故后教训

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The failure of the tailing dam at the Aznalcóllar mine (SW Spain) in 1998 released ≈ 6 million m3 of pyrite sludge and acidic waters, and caused an enormous environmental disaster in the Agrio and Guadiamar rivers. A small aquifer formed by recent alluvial materials deposited by both rivers was also affected. The mine closed as a result of the spill but a new project for its reopening is currently being developed. The area covered by the spill (≈ 60 km long) was later transformed into a protected green corridor, which connects two important natural reserves. This work describes the effectiveness of the remediation measures taken and analyzes the evolution of water quality in the area since 1980 (almost 20 years before the accident occurred). The contaminant levels in both surface and groundwater showed a sharp decrease the first years after the spill, followed by a subsequent stabilization of pollution levels. Nowadays, pollutant concentrations in surface waters are even lower than those recorded before the spill, due to the cessation of mining and the effectiveness of the remediation. Despite this fast and outstanding improvement, the alluvial aquifer close to the mining zone is still polluted, with acidic pH values in some areas, probably due to the slow movement of groundwater together with the existence of some areas with polluted soils. As this aquifer feeds the streams, some pollutants (e.g. Al, Cd, and Zn) reach the surface waters. Remediation of the polluted soils as well as the alluvial aquifer in this sector is strongly recommended to achieve the complete rehabilitation of the affected area.

Zusammenfassung

Beim Dammbruch des Bergeteichs beim Bergbau Aznalcóllar in Südwestspanien wurden 6 Mio. m3 sulfidischer Schlamm und Wasser freigesetzt, die eine enorme Umweltkatastrophe im Agrio- und im Guadiamar Fluss verursacht haben. Ein kleiner Aquifer aus rezent abgelagertem Alluvialmaterial wurde bei beiden Flüsse ebenfalls beeinträchtigt. Der Bergbau hat als Folge der Schlammkatastrophe geschlossen, aber ein Projekt zur Wiederinbetriebnahme wird aktuell entwickelt. Das von der Schlammkatastrophe betroffenen Gebiet mit einer Länge von ca. 60 km wurde in einen geschützten Grünkorridor welcher zwei wichtige Naturreservate verbindet umgewandelt. Die Arbeit beschreibt die Wirksamkeit der vorgenommenen Sanierungsmaßnahmen und analysiert die Entwicklung der Wasserqualität im Gebiet seit 1980 (seit fast 20 Jahren vor Eintritt des Vorfalls). Sowohl im Oberflächen- als auch im Grundwasser zeigten die Schadstoffgehalte in den ersten Jahren nach dem Vorfall eine starke Abnahme gefolgt von einer Stabilisierung der Schadstoffwerte. Heute sind die Schadstoffgehalte im Oberflächenwasser wegen der Einstellung des Bergbaus und der Wirksamkeit der Sanierungsmaßnahmen niedriger, als die vor dem Vorfall gemessenen. Trotz dieser schnellen und herausragenden Verbesserung ist der alluviale Grundwasserleiter in Bergbaunähe, bei sauren pH-Werten, noch immer in einigen Bereichen belastet. Die Kontamination ist vermutlich durch die niedrige Fließgeschwindigkeit in Verbindung mit einigen Bereichen mit belastetem Boden bedingt. Da dieser Aquifer die Flüsse speist, gelangen einige Schadstoffe (z.B. Al, Cd and Zn) ins Oberflächenwasser. Im genannten Bereich wird die Sanierung der kontaminierten Böden und des alluvialen Aquifers zur Erreichung eines guten Zustandes der betroffenen Flächen dringend empfohlen.

Resumen

El fallo del dique de cola de la mina de Aznalcóllar (SW España) en 1998 liberó aproximadamente 6 millones de m3 de lodos de pirita y aguas ácidas, y causó un enorme desastre ambiental en los ríos Agrio y Guadiamar. También fue afectado un pequeño acuífero formado por materiales aluviales depositados por ambos ríos. La mina cerró como resultado del derrame, pero un nuevo proyecto para su reapertura se está desarrollando actualmente. La zona cubierta por el derrame (de aproximadamente 60 km de longitud) se transformó posteriormente en un corredor verde protegido, que conecta dos importantes reservas naturales. En este trabajo se describe la eficacia de las medidas de remediación adoptadas y se analiza la evolución de la calidad del agua en la zona desde 1980 (casi 20 años antes de que se produjera el accidente). Los niveles de contaminantes tanto en las aguas superficiales como en las subterráneas mostraron una fuerte disminución los primeros años después del derrame, seguida de una posterior estabilización de los niveles de contaminación. Hoy en día, las concentraciones de contaminantes en las aguas superficiales son incluso más bajos que los registrados antes del derrame, debido al cese de la explotación minera y a la eficacia de la remediación. A pesar de esta rápida y destacada mejora, el acuífero aluvial cercano a la zona de explotación minera, sigue contaminado con valores de pH ácido en algunas zonas, probablemente debido al lento movimiento de las aguas subterráneas junto con la existencia de algunas zonas con suelos contaminados. Debido a que este acuífero alimenta a los arroyos, algunos contaminantes (por ejemplo, Al, Cd y Zn) llegan a las aguas superficiales. Se recomienda encarecidamente el tratamiento de los suelos contaminados así como del acuífero aluvial de este sector, para lograr la completa rehabilitación de la zona afectada.

抽象

Aznalcollar矿(西班牙西南部)尾矿库在1998年溃坝后溃泄约600万立方米黄铁矿污泥和酸性废水,引起Agrio河和Guadiamar河流域巨大环境灾难。两条河流冲洪积物沉积形成的小型含水层也受到了影响。矿山因溃坝被关闭;目前矿山正提请恢复开采项目。约60公里长溃坝溢出物覆盖区已被改造成为受保护的连接两个重要自然保护区的绿色走廊。研究描述了修复措施的有效性,分析了1980年以来(事故发生前近20年)水质演化。地表和地下水的污染水平在泄漏后最初几年中急剧下降,之后趋于稳定。如今,由于采山停采和有效修复,地表水污染物浓度甚至比溃坝泄漏前还低。虽然地表水质快速、显著恢复,但是靠近矿坑的冲洪积含水层仍受污染,局部pH值呈酸性,推测因地下水移动缓慢和局部存在受污染土壤所致。由于含水层补给当地河流,一些污染物(如铝、镉和锌)进入了地表水域。强烈建议修复区内已受污染土壤和冲洪积含水层,以彻底修复受影响区的目的研究区。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguilar J, Dorronsoro C, Fernández E, Fernández J, García I, Martín F, Sierra M, Simón M (2007) Remediation of As-contaminated soils in the Guadiamar River Basin (SW, Spain). Water Air Soil Pollut 180:109–118

    Google Scholar 

  • Alcolea A, Ayora C, Bernet O, Bolzicco J, Carrera J, Cortina JL, Coscera G, de Pablo J, Domènech C, Galache J, Gibert O, Knudby C, Mantecón R, Manzano M, Saaltink M, Silgado A (2001) Barrera geoquímica. Bol Geol Minero 112:229–256 (in Spanish)

    Google Scholar 

  • Amores F, García Vargas E, Garrido González P, Huntz Ortiz MA, Vázquez Paz J, Rodríguez Mellado J (2014) Los paisajes históricos del valle del Guadiamar (Sevilla): La minería y la metalurgia en el extremo oriental del cinturón ibérico de piritas. Cuadernos de Prehistoria y Arqueología de la Univ de Granada 24:203–237 (in Spanish)

    Google Scholar 

  • Ayala-Carcedo F (2004) La rotura de la balsa de residuos mineros de Aznalcóllar (España) de 1998 y el desastre ecológico consecuente del rio Guadiamar: causas, efectos y lecciones. Bol Geol Minero 115:711–738 (in Spanish)

    Google Scholar 

  • Ayora C, Bernet O, Bolzicco J, Carrera J, Domènech C, Cerón JC, Fernández I, Gómez P, Jaén M, Mantecón R, Manzano M, Martín Machuca M, Mediavilla C, Moreno L, Navarrete P, Salvany JM (2001) Hidrogeología del Valle del Guadiamar y zonas colindantes. Funcionamiento del sistema acuífero. Boletín Geol Minero 112:69–92 (in Spanish)

    Google Scholar 

  • Byrne P, Hudson-Edward KA, Bird G, Macklin MC, Brewer PA, Williams RD, Jamieson HE (2018) Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Appl Geochem 91:64–74

    Google Scholar 

  • Cabrera F, Toca C, Diaz E, Arambarri P (1984) Acid mine-water and agricultural pollution in a river skirting the Doñana National Park (Guadiamar river, South West Spain). Water Res 18:1469–1482

    Google Scholar 

  • Cabrera F, Soldevilla M, Cordón R, Arambarri P (1987) Heavy metal pollution in the Guadiamar River and the Guadalquivir estuary (South West Spain). Chemosphere 16:463–468

    Google Scholar 

  • Coimbra KTO, Alcântara EFC, Souza Filho CR (2019) An assessment of natural and manmade hazard effects on the underwater light field of the Rio Doce River continental shelf. Sci Total Environ 685:1087–1096

    Google Scholar 

  • De Miguel RJ, Gálvez-Bravo L, Oliva-Paterna FJ, Fernández-Delgado C (2016a) Disturbance accumulation hampers fish assemblage recovery long after the worst mining spill in the Iberian Peninsula. J Appl Ichthyol 32:180–189

    Google Scholar 

  • De Miguel R, Gálvez-Bravo L, Oliva-Paterna F, Cayuela L, Fernández-Delgado C (2016b) Recolonization process and fish assemblage dynamics in the Guadiamar River (SW Spain) after the Aznalcóllar mine toxic spill. River Res Appl 32:1196–1206

    Google Scholar 

  • Delibes M, Cabezas S, Jiménez B, González MJ (2009) Animal decisions and conservation: the recolonization of a severely polluted river by the Eurasian otter. Anim Conserv 12:400–407

    Google Scholar 

  • Domínguez MT, Alegre JM, Madejón P, Madejón E, Burgos P, Cabrera F, Marañón T, Murillo JM (2016) River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin. Geoderma 261:133–140

    Google Scholar 

  • Drake P, Baldó F, Cuesta JA, Garía-González D, Silva-García A, Arias AM, Rodríguez A, Sobrino I, Fernández-Delgado C (1999) Initial effects of the toxic waste spill (Aznalcóllar mine accident) on the aquatic macrofauna of the Guadalquivir Estuary. Sci Total Environ 242:271–280

    Google Scholar 

  • Feasby G, Chambers D, Fernandez Rubio R, Gascó Montes J, Hynes T (1999) Environmental impact and reclamation planning following the April 25, 1998 accidental tailings release at the Boliden Apirsa Mine at Aznalcóllar, Spain. In: Fernández Rubio R (ed) Proceedings to mine, water and environment vol I, pp 279–290

  • Ferreras-Romero M, Máquez-Rodríguez J, Ruiz-García A (2009) Implications of anthropogenic disturbance factors on the Odonata assemblage in a Mediterranean fluvial system. Int J Odonatol 12:413–428

    Google Scholar 

  • Galán E, González I, Fernández-Caliani J (2002) Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. Sci Total Environ 286:167–179

    Google Scholar 

  • García-Carmona M, García-Robles H, Torrano CT, Ondoño EF, Moreno JL, Aragón MS, Peinado FM (2019) Residual pollution and vegetation distribution in amended soils 20 years after a pyrite mine tailings spill (Aznalcóllar, Spain). Sci Total Environ 650:933–940

    Google Scholar 

  • García-Luque E, Forja J, DelValls T, Gómez-Parra A (2003) The behaviour of heavy metals from the Guadalquivir estuary after the Aznalcollar mining spill: field and laboratory surveys. Environ Monit Assess 83:71–88

    Google Scholar 

  • Gibert O, Rötting T, Cortina JL, de Pablo J, Ayora C, Carrera J, Bolzicco J (2011) In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcollar (Sw Spain). J Hazard Mater 191:287–295

    Google Scholar 

  • Gómez-Parra A, Forja JM, Del Valls TA, Sáenz I, Riba I (2000) Early contamination by heavy metals of the Guadalquivir estuary after the Aznalcóllar mining spill (SW Spain). Mar Pollut Bull 40:1115–1123

    Google Scholar 

  • Grande J, Santisteban M, Pérez-Ostalé E, Valente T, de la Torre M, Gomes P, Barrios-Parra F (2018) Dilution versus pollution in watercourses affected by acid mine drainage: a graphic model for the Iberian Pyrite Belt (SW Spain). Mine Water Environ 37:211–216

    Google Scholar 

  • Green AJ, Bustamante J, Janss GFE, Fernández-Zamudio R, Díaz-Paniagua C (2016) Doñana wetlands (Spain). In: Finlayson C, Milton G, Prentice R, Davidson N (eds) The wetland book. Springer, Dordrecht, pp 1–14

    Google Scholar 

  • Grimalt JO, Ferrer M, Macpherson E (1999) The mine tailing accident in Aznalcollar. Sci Total Environ 242:3–11

    Google Scholar 

  • Guerrero FM, Lozano M, Rueda-Cantuche JM (2008) Spain’s greatest and most recent mine disaster. Disasters 32:19–40

    Google Scholar 

  • Hatje V, Pedreira RMA, Rezende CE, França Schettini CA, Cotrim de Souza G, Canaver Marin D, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:10706

    Google Scholar 

  • Hudson-Edwards KA, Macklin MG, Jamieson HE, Brewer PA, Coulthard TJ, Howard AJ, Turner JN (2003) The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the Rıos Agrio-Guadiamar, Aznalcóllar, Spain. Appl Geochem 18:221–239

    Google Scholar 

  • López-Pamo D, Barettino D, Antón-Pacheco C, Ortiz G, Arránz JC, Gumiel JC, Martínez-Pledel B, Aparicio M, Montouto O (1999) The extent of the Aznalcóllar pyritic sludge spill and its effects on soils. Sci Total Environ 242:57–88

    Google Scholar 

  • Macklin MG, Brewer PA, Balteanu D, Coulthard TJ, Driga B, Howard AJ, Zaharia S (2003) The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Appl Geochem 18:241–257

    Google Scholar 

  • Madejón P, Domínguez MT, Madejón E, Cabrera F, Marañón T, Murillo JM (2018) Soil–plant relationships and contamination by trace elements: a review of 20 years of experimentation and monitoring after the Aznalcóllar (SW Spain) mine accident. Sci Total Environ 625:50–63

    Google Scholar 

  • Manzano M, Ayora C, Domenech C, Navarrete P, Garralon A, Turrero M-J (1999) The impact of the Aznalcollar mine tailing spill on groundwater. Sci Total Environ 242:189–209

    Google Scholar 

  • Márquez-Ferrando R, Santos X, Pleguezuelos JM, Ontiveros D (2009) Bioaccumulation of heavy metals in the lizard Psammodromus algirus after a tailing-dam collapse in Aznalcóllar (Southwest Spain). Arch Environ Contam Toxicol 56:276

    Google Scholar 

  • Martín JE, García-Tenorio R, Ontalba-Salamanca MA, Respaldiza MA, da Silva MF (2000) TTPIXE analysis of Guadiamar river sediments collected before the environmental disaster of 1998. Nucl Instrum Methods Phys Res B 161(163):825–829

    Google Scholar 

  • Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16

    Google Scholar 

  • Olías M, Nieto JM (2015) Background conditions and mining pollution throughout history in the Río Tinto (SW Spain). Environments 2:295–316

    Google Scholar 

  • Olías M, Cerón J, Fernández I, Moral F, Rodriguez-Ramirez A (2005) State of contamination of the waters in the Guadiamar valley 5 years after the Aznalcóllar spill. Water Air Soil Pollut 166:103–119

    Google Scholar 

  • Olías M, Ceron J, Moral F, Ruiz F (2006) Water quality of the Guadiamar River after the Aznalcóllar spill (SW Spain). Chemosphere 62:213–225

    Google Scholar 

  • Olías M, Moral F, Galván L, Cerón JC (2012) Groundwater contamination evolution in the Guadiamar and Agrio aquifers after the Aznalcóllar spill: assessment and environmental implications. Environ Monit Assess 184:3629–3641

    Google Scholar 

  • Ontiveros D, Márquez-Ferrando R, Fernández-Cardenete JR, Santos X, Caro J, Pleguezuelos JM (2013) Recovery of the bird community after a mine spill and landscape restoration of a Mediterranean River. Restor Ecol 21:193–199

    Google Scholar 

  • Palanques A, Puig P, Guillén J, Quero X, Alastuey A (1999) Zinc contamination in the bottom and suspended sediments of the Guadalquivir estuary after the Aznalcollar spill (south-western Spain). Control of hydrodynamic processes. Sci Total Environ 242:211–220

    Google Scholar 

  • Petticrew EL, Albers SJ, Baldwin SA, Carmack EC, Déry SJ, Gantner N, Graves KE, Laval B, Morrison J, Owens PN, Selbie DT, Vagle S (2015) The impact of a catastrophic mine tailings impoundment spill into one of North America’s largest fjord lakes: Quesnel Lake, British Columbia, Canada. Geophys Res Lett 42:3347–3355

    Google Scholar 

  • Pinedo Vara I (1963) Piritas de Huelva. Su historia, minería y aprovechamiento. Summa, Madrid (in Spanish)

    Google Scholar 

  • Prat N, Toja J, Sola C, Burgos M, Plans M, Rieradevall M (1999) Effect of dumping and cleaning activities on the aquatic ecosystems of the Guadiamar River following a toxic flood. Sci Total Environ 242:231–248

    Google Scholar 

  • Riba I, Conradi M, Forja JM, DelValls TA (2004) Sediment quality in the Guadalquivir estuary: lethal effects associated with the Aznalcóllar mining spill. Mar Pollut Bull 48:144–152

    Google Scholar 

  • Rico M, Benito G, Salgueiro AR, Díez-Herrero A, Pereira HG (2008) Reported tailings dam failures: a review of the European incidents in the worldwide context. J Hazard Mater 152:846–852

    Google Scholar 

  • Roche C, Thygesen K, Baker E (eds) (2017) Mine tailings storage: safety is no accident. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRIDt, Arendal

    Google Scholar 

  • Salvany JM, Carrera J, Bolzicco J, Mediavilla C (2004) Pitfalls in the geological characterization of alluvial deposits: site investigation for reactive barrier installation at Aznalcóllar, Spain. Q J Eng Geol Hydrogeol 37:141–154

    Google Scholar 

  • Santamarina JC, Torres-Cruz LA, Bachus RC (2019) Why coal ash and tailings dam disasters occur. Science 364:526–528

    Google Scholar 

  • Schoenberger E (2016) Environmentally sustainable mining: the case of tailings storage facilities. Resour Policy 49:119–128

    Google Scholar 

  • Silva DC, Bellato CR, Marques Neto JO, Fontes MPF (2018) Trace elements in river waters and sediments before and after a mining dam breach (Bento Rodrigues, Brasil). Quim Nova 41:857–866

    Google Scholar 

  • Silva Rotta LH, Alcântara E, Park E, Negri RG, Lin YN, Bernardo N, Gonçalves Mendes TS, Souza Filho CR (2020) The 2019 Brumadinho tailings dam collapse: possible cause and impacts of the worst human and environmental disaster in Brazil. Int J Appl Earth Obs Geoinf 90:102119

    Google Scholar 

  • Simón M, Ortiz I, Garcıa I, Fernández E, Fernández J, Dorronsoro C, Aguilar J (1999) Pollution of soils by the toxic spill of a pyrite mine (Aznalcóllar, Spain). Sci Total Environ 242:105–115

    Google Scholar 

  • Simón M, Diez M, García I, Martín F (2009) Distribution of As and Zn in soils affected by the spill of a pyrite mine and effectiveness of the remediation measures. Water Air Soil Pollut 198:77–85

    Google Scholar 

  • Skousen J, Zipper CE, Rose A, Ziemkiewicz PF, Nairn R, McDonald LM, Kleinmann RL (2017) Review of passive systems for acid mine drainage treatment. Mine Water Environ 36:133–153

    Google Scholar 

  • Solà C, Ma B, Plazuelo Á, Toja J, Plans M, Ns P (2004) Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). Sci Total Environ 333:109–126. https://doi.org/10.1016/j.scitotenv.2004.05.011

    Article  Google Scholar 

  • Thompson F, Oliveira BC, Cordeiro MC, Masi BP, Rangel TP, Paz P, Freitas T, Lopes G, Silva BS, Cabral AS, Soares M, Lacerda D, Vergilio CS, Lopes-Ferreira M, Lima C, Thompson C, Rezende CE (2020) Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Sci Total Environ 705:135914

    Google Scholar 

  • Tornero V, Arias AM, Blasco J (2014) Trace element contamination in the Guadalquivir River Estuary 10 years after the Aznalcóllar mine spill. Mar Pollut Bull 86:349–360

    Google Scholar 

  • Turner J, Brewer P, Macklin M (2008) Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands. Sci Total Environ 394:144–161

    Google Scholar 

  • van Geen A, Takesue R, Chase Z (1999) Acid mine tailings in southern Spain. Sci Total Environ 242:221–229

    Google Scholar 

  • Vergilio CDS, Lacerda D, Vaz de Oliveira BC, Sartori E, Munis Campos G, de Souza Pereira AL, Borges de Aguiar D, Souza TDS, Gomes de Almeida M, Thompson F, Rezende CE (2020) Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil). Sci Rep 10:5936

    Google Scholar 

Download references

Acknowledgements

M.D. Basallote thanks the Spanish Ministry of Science and Innovation for the Postdoctoral Fellowship granted under application reference IJC2018-035056-I. The authors thank Prof. Fernández Rubio and the three anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Olías.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olías, M., Cánovas, C.R. & Basallote, M.D. Surface and Groundwater Quality Evolution in the Agrio and Guadiamar Rivers After the Aznalcóllar Mine Spill (SW Spain): Lessons Learned. Mine Water Environ 40, 235–249 (2021). https://doi.org/10.1007/s10230-020-00713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00713-7

Keywords

Navigation