Skip to main content
Log in

Simulation of the Composition and Cooling Rate Effects on the Solidification Path of Casting Aluminum Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Solidification simulations were carried out for casting aluminum alloy A356 using PanSolidification module of Pandat software which enables consideration of back diffusion in the solid during solidification. The casting microstructure features including the solidified phases, phase fractions, and secondary dendrite arm spacing (SDAS) were simulated. The simulated results explain the experimental observations reasonably well. High throughput calculation was performed to understand the effects of alloy composition and cooling rate on the formation of the intermetallic phases and SDAS in the casting microstructure. The role of Mn in eliminating the formation of detrimental β-AlFeSi phase was also simulated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, Academic Press, Cambridge, 1970

    Google Scholar 

  2. N. Saunders and A.P. Miodownik, CALPHAD Calculation of Phase Diagrams: A Comprehensive Guide, Pergamon, 1998

  3. Y.A. Chang, S.L. Chen, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Phase Diagram Calculation: Past, Present and Future, Prog. Mater Sci., 2004, 49, p 313-345

    Article  Google Scholar 

  4. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method, Cambridge University Press, Cambridge, 2007

    Book  Google Scholar 

  5. Y.-M. Muggianu, M. Gambino, and J.-P. Bros, Formation Enthalpies of Bismuth-Tin-Gallium Liquid Alloys at 723 k, Choice of an Analytical Representation of the Quantities of Integral and Partial Excess of Mixture, J. Chimie Phys., 1975, 72, p 83-88

    Article  ADS  Google Scholar 

  6. U.R. Kattner, The CALPHAD Method and its Role in Material and Process Development, Tecnol Metal Mater. Min., 2016, 13(1), p 3-15

    Article  Google Scholar 

  7. Z.-K. Liu, Tools for Computational Thermodynamics, Calphad, 2009, 33(2), p 265-440

    Article  Google Scholar 

  8. G.B. Olson, Genomic Materials Design: The Ferrous Frontier, Acta Mater., 2013, 61(3), p 771-781

    Article  ADS  Google Scholar 

  9. F. Zhang, W.S. Cao, C. Zhang, S.-L. Chen, J. Zhu, D.C. Lv, Simulation of co-precipitation kinetics of γ and γ’, in Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives: Energy, Aerospace, and Industrial Applications, E.O.e. al. Ed., 2018, TMS, pp 147–161

  10. O.N. Senkov, S. Gorsse, and D.B. Miracle, High Temperature Strength of Refractory Complex Concentrated Alloys, Acta Mater., 2019, 175, p 394-405

    Article  ADS  Google Scholar 

  11. J.O. Andersson and J. Agren, Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases, J. Appl. Phys., 1992, 72(4), p 1350-1355

    Article  ADS  Google Scholar 

  12. C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Development of a Diffusion Mobility Database for Ni-Base Superalloys, Acta Mater., 2002, 50(4), p 775-792

    Article  ADS  Google Scholar 

  13. C.E. Campbell, U.R. Kattner, and Z.-K. Liu, The Development of Phase-Based Property Data Using the CALPHAD Method and Infrastructure Needs, Integr. Mater. Manuf. Innovat., 2014, 3(1), p 12

    Google Scholar 

  14. National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security, The National Academies Press, 2008

  15. CompuTherm LLC, www.computherm.com

  16. L.Y. Zhang, B.D. Zhou, Z.J. Zhan, Y.Z. Jia, S.F. Shan, B.Q. Zhang, and W.K. Wang, Mechanical Properties of Cast A356 Alloy, Solidified at Cooling Rates Enhanced by Phase Transition of a Cooling Medium, Mater. Sci. Eng., A, 2007, 448(1), p 361-365

    Article  Google Scholar 

  17. L. Ceschini, A. Morri, A. Morri, and G. Pivetti, Predictive Equations of the Tensile Properties Based on Alloy Hardness And Microstructure for an A356 Gravity Die Cast Cylinder Head, Mater. Des., 2011, 32(3), p 1367-1375

    Article  Google Scholar 

  18. R. Chen, Y.F. Shi, Q.Y. Xu, and B.C. Liu, Effect of Cooling Rate on Solidification Parameters and Microstructure of Al-7Si-03 Mg-01.5Fe (wt.%) Alloy, Trans. Nonferrous Metals Soc. China, 2014, 24(6), p 1645-1652

    Article  Google Scholar 

  19. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine, PanOptimizer and PanPrecipitation for multi-Component Phase Diagram Calculation and Materials Property Simulation, Calphad, 2009, 33(2), p 328-342

    Article  Google Scholar 

  20. G.H. Gulliver, The Quantitative Effect of Rapid Cooling Upon the Constitution of Binary Alloys, J. Inst. Metals, 1913, 9, p 120-157

    Google Scholar 

  21. E. Scheil, Remarks on the Crystal Layer Formation, Z. Metallkd., 1942, 34, p 70-72

    Google Scholar 

  22. V.G. Smith, W.A. Tiller, and J.W. Rutter, A Mathematical Analysis of Solute Redistribution During Solidification, Can. J. Phys., 1955, 33(12), p 723-745

    Article  ADS  Google Scholar 

  23. H.D. Brody and M.C. Flemings, Solute Redistribution during Dendrite Solidification, Trans. Met. Soc. AIME, 1966, 236, p 624-633

    Google Scholar 

  24. T.W. Clyne and W. Kurz, Solute Redistribution during Solidification with Rapid Solid State Diffusion, Metall. Trans. A, 1981, 12(6), p 965-971

    Article  Google Scholar 

  25. S. Ganesan and D.R. Poirier, Solute Redistribution in Dendritic Solidification with Diffusion in the Solid, J. Cryst. Growth, 1989, 97(3–4), p 851-859

    Article  ADS  Google Scholar 

  26. C.Y. Wang and C. Beckermann, A Multiphase Solute Diffusion Model for Dendritic Alloy Solidification, Met. Trans. A, 1993, 24, p 2787-2802

    Article  Google Scholar 

  27. M. Hillert, L. Hoglund, and M. Schalin, Role of Back-Diffusion Studied by Computer Simulation, Metall. Mater. Trans. A, 1999, 30(6), p 1635-1641

    Article  Google Scholar 

  28. X. Yan, Thermodynamic and Solidification Modeling Coupled with Experimental Investigation of the Multicomponent Aluminum Alloys, University of Wisconsin-Madison, Madison, 2001

    Google Scholar 

  29. T. Kraft, A. Roósz, and M. Rettenmayr, Undercooling Effects in Microsegregation Modelling, Scripta Mater., 1996, 35, p 77-82

    Article  Google Scholar 

  30. T. Kraft and Y.A. Chang, Predicting Microstructure and Microsegregation in Multicomponent Alloys, JOM, 1997, 49(12), p 20-28

    Article  ADS  Google Scholar 

  31. W.J. Boettinger, U.R. Kattner, D.K. Banerjee, Analysis of Solidification Path and Microsegration in Multicomponent Alloys, Modeling of Casting, Welding and Advanced Solidification Processes VIIIed., B.G. Thomas, C. Beckermann, Eds., The Minerals, Metals & Materials Society, 1998, p 159-170

  32. ProCast, Casting Processes Simulation Software, (ESI Group, www.esi-group.com)

  33. J.O. Lima, C.R. Barbosa, I.A.B. Magno, J.M. Nascimento, A.S. Barros, M.C. Oliveira, F.A. Souza, and O.L. Rocha, Microstructural Evolution During Unsteady-State Horizontal Solidification of Al-Si-Mg (356) Alloy, Trans. Nonferrous Metals Soc. China, 2018, 28(6), p 1073-1083

    Article  Google Scholar 

  34. A. Abedi, M. Shahmiri, B.A. Esgandari, and B. Nami, Microstructural Evolution During Partial Remelting of Al-Si Alloys Containing Different Amounts of Magnesium, J. Mater. Sci. Technol., 2013, 29(10), p 971-978

    Article  Google Scholar 

  35. H.C. Liao, W.R. Huang, Q.G. Wang, and F. Jia, Effects of Strontium, Magnesium Addition, Temperature Gradient, and Growth Velocity on Al-Si Eutectic Growth in Unidirectionally-Solidified Al-13 wt.% Si Alloy, J. Mater. Sci. Technol., 2014, 30(2), p 146-153

    Article  Google Scholar 

  36. S.-M. Liang and R. Schmid-Fetzer, Nucleants of Eutectic Silicon in Al-Si Hypoeutectic Alloys: β-(Al, Fe, Si) or AlP Phase, Metall. Mater. Trans. A, 2014, 45(12), p 5308-5312

    Article  Google Scholar 

  37. L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton, The effect of iron content on the iron-containing intermetallic phases in a cast 6060 aluminum alloy, Metall. Mater. Trans. A, 2011, 42, p 1737-1749

    Article  Google Scholar 

  38. Y. Han, J. Choi, C. Choi, and D. McCartney, Intermetallic Phase Formation in Directionally Solidified Al-Si-Fe Alloy, Met. Mater. Int., 2004, 10, p 27-32

    Article  Google Scholar 

  39. A. Gorny, J. Manickaraj, Z. Cai, and S. Shankar, Evolution of Fe Based Intermetallic Phases in Al-Si Hypoeutectic Casting Alloys: Influence of the Si and Fe Concentration, and Solidification Rate, J. Alloy. Compd., 2013, 577, p 103-124

    Article  Google Scholar 

  40. J.W. Liu and S. Kou, Susceptibility of Ternary Aluminum Alloys to Cracking During Solidification, Acta Mater., 2017, 125, p 513-523

    Article  ADS  Google Scholar 

  41. C. Zhang, J.S. Miao, S.-L. Chen, F. Zhang, and A.A. Luo, CALPHAD-Based Modeling and Experimental Validation of Microstructural Evolution and Microsegregation in Magnesium Alloys During Solidification, J. Phase Equilibria Diffus., 2019, 40(4), p 495-507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at “PSDK XIV: Phase Stability and Diffusion Kinetics—Gibbs: Phase Equilibria, Diffusion and Materials Design” held during MS&T’19, September 29–October 3, 2019, in Portland, Oregon. The special sessions were dedicated to honor Dr. Patrice Turchi, recipient of the ASM International 2019 J. Willard Gibbs Phase Equilibria Award “for outstanding and pioneering contributions in the application of first-principles, quantum-mechanical calculations to the modeling of phase equilibria and thermodynamic behavior of alloys.” It has been expanded from its original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhang, C., Liang, SM. et al. Simulation of the Composition and Cooling Rate Effects on the Solidification Path of Casting Aluminum Alloys. J. Phase Equilib. Diffus. 41, 793–803 (2020). https://doi.org/10.1007/s11669-020-00834-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00834-0

Keywords

Navigation