Skip to main content
Log in

One-step radiation synthesis of novel star-shaped polymeric ionic liquid–POSS gel electrolytes with high ionic conductivity and mechanical properties for supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymeric ionic liquids (PILs) not only have the unique properties of ionic liquid, but also possess diverse mechanical properties of polymers. Due to their safety and conductivity, PILs-based gel polymer electrolytes (GPEs) are the promising candidates for the design of the devices. Here, we reported a facile approach to synthesize novel star-shaped GPE (named PIL–POSS–Li GPE) based on 1-vinyl-3-butylimidazolium hexafluorophosphate ionic liquid, octavinyl polyhedral oligomeric silsesquioxane (POSS) and LiPF6 solution in one step via gamma-ray radiation. Compared with PIL–Li GPE without POSS, the incorporation of POSS into the PIL–Li GPE can improve properties of PIL–POSS–Li GPE due to the formation of a star-shaped structure, and the as-prepared PIL–POSS–Li GPE showed excellent compressive strength of 1617 kPa, high fracture compression stain of 79% and high ionic conductivity of 3.88 mS cm−1 at 25 °C. What is more, the PIL–POSS–Li supercapacitor (SC) showed better electrochemical performance than PIL–Li SC.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Qian WJ, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159

    Article  CAS  Google Scholar 

  2. Huang T, Long MC, Wang XL, Wu G, Wang YZ (2019) One-step preparation of poly(ionic liquid)-based flexible electrolytes by in situ polymerization for dendrite -free lithium ion batteries. Chem Eng J 375:122062. https://doi.org/10.1016/j.cej.2019.122062

    Article  CAS  Google Scholar 

  3. Gao HS, Bai L, Han JL, Yang BB, Zhang SJ, Zhang XP (2018) Functionalized ionic liquid membranes for CO2 separation. Chem Commun 54:12671–12685

    Article  CAS  Google Scholar 

  4. Fan SY, Hao YN, Zhang WX, Kapasi A, Shu Y, Wang JH, Chen W (2020) Poly(ionic liquid)-gated CuCo2S4 for pH-/thermo-triggered drug release and photoacoustic imaging. ACS Appl Mater Interfaces 12:9000–9007

    Article  CAS  Google Scholar 

  5. Song HB, Wang YJ, Xiao M, Liu L, Liu YL, Liu XF, Gai HJ (2019) Design of novel poly(ionic liquids) for the conversion of CO2 to cyclic carbonates under mild conditions without solvent. ACS Sustain Chem Eng 7:9489–9497. https://doi.org/10.1021/acssuschemeng.9b00865

    Article  CAS  Google Scholar 

  6. Yu YY, Yu C, Yin TX, Ou SS, Sun XY, Wen XR, Zhang L, Tang DQ, Yin XX (2017) Functionalized poly (ionic liquid) as the support to construct a ratiometric electrochemical biosensor for the selective determination of copper ions in AD rats. Biosens Bioelectron 87:278–284

    Article  CAS  Google Scholar 

  7. Tiruye GA, Munoz-Torrero D, Palma J, Anderson M, Marcilla R (2016) Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids. J Power Sources 326:560–568

    Article  CAS  Google Scholar 

  8. Yuan JY, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  CAS  Google Scholar 

  9. Gao HC, Xue LG, Xin S, Goodenough JB (2018) A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew Chem Int Edn 57:5449–5453. https://doi.org/10.1002/anie.201802248

    Article  CAS  Google Scholar 

  10. Verdier N, Lepage D, Zidani R, Prebe A, Ayme-Perrot D, Pellerin C, Dolle M, Rochefort D (2020) Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-ion battery. ACS Appl Energy Mater 3:1099–1110. https://doi.org/10.1021/acsaem.9b02129

    Article  CAS  Google Scholar 

  11. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291. https://doi.org/10.1016/j.jpowsour.2013.05.178

    Article  CAS  Google Scholar 

  12. Li H, Feng ZQ, Zhao K, Wang ZH, Liu JH, Liu J, Song HZ (2019) Chemically crosslinked liquid crystalline poly(ionic liquid)s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus. Nanoscale 11:3689–3700. https://doi.org/10.1039/c8nr09030k

    Article  CAS  Google Scholar 

  13. Safa M, Adelowo E, Chamaani A, Chawla N, Baboukani AR, Herndon M, Wang CL, El-Zahab B (2019) Poly(ionic liquid)-based composite gel electrolyte for lithium batteries. Chemelectrochem 6:3319–3326. https://doi.org/10.1002/celc.201900504

    Article  CAS  Google Scholar 

  14. Wang S, Shi QX, Ye YS, Xue Y, Wang Y, Peng HY, Xie XL, Mai YW (2017) Constructing desirable ion-conducting channels within ionic liquid-based composite polymer electrolytes by using polymeric ionic liquid-functionalized 2D mesoporous silica nanoplates. Nano Energy 33:110–123

    Article  CAS  Google Scholar 

  15. Huang Y, Gong SD, Huang R, Cao HJ, Lin YH, Yang M, Li X (2015) Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix. RSC Adv 5:45908–45918

    Article  CAS  Google Scholar 

  16. Li M, Ren WT, Zhang Y, Zhang YX (2012) Study on properties of gel polymer electrolytes based on ionic liquid and amine-terminated butadiene-acrylonitrile copolymer chemically crosslinked by polyhedral oligomeric silsesquioxane. J Appl Polym Sci 126:273–279

    Article  CAS  Google Scholar 

  17. Liu B, Huang Y, Cao HJ, Zhao L, Huang YX, Song AM, Lin YH, Wang MS, Li X (2018) A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method. J Solid State Electrochem 22:1771–1783. https://doi.org/10.1007/s10008-017-3877-8

    Article  CAS  Google Scholar 

  18. Liu B, Huang Y, Zhao L, Huang YX, Song AM, Lin YH, Wang MS, Li X, Cao HJ (2018) A novel non-woven fabric supported gel polymer electrolyte based on poly (methylmethacrylate-polyhedral oligomeric silsesquioxane) by phase inversion method for lithium ion batteries. J Membrane Sci 564:62–72. https://doi.org/10.1016/j.memsci.2018.07.014

    Article  CAS  Google Scholar 

  19. Zhong XP, Huang Y, Cao HJ, Lin YH, Liu B, Song AM, Chen ZM, Tang SH, Wang MS, Li X (2017) Polyhedral oligomeric silsesquioxane-modified gel polymer electrolyte based on matrix of poly(methyl methacrylate-maleic anhydride). J Solid State Electrochem 21:849–857

    Article  CAS  Google Scholar 

  20. Fu JF, Lu Q, Shang DP, Chen LY, Jiang Y, Xu YF, Yin JT, Dong X, Deng W, Yuan S (2018) A novel room temperature POSS ionic liquid-based solid polymer electrolyte. J Mater Sci 53:8420–8435. https://doi.org/10.1007/s10853-018-2135-5

    Article  CAS  Google Scholar 

  21. Lu Q, Fu JF, Chen LY, Shang DP, Li MM, Xu YF, Jia RR, Yuan S, Shi LY (2019) Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. J Power Sources 414:31–40. https://doi.org/10.1016/j.jpowsour.2018.12.085

    Article  CAS  Google Scholar 

  22. Yang G, Chanthad C, Oh H, Ayhan IA, Wang Q (2017) Organic-inorganic hybrid electrolytes from ionic liquid-functionalized octasilsesquioxane for lithium metal batteries. J Mater Chem A 5:18012–18019. https://doi.org/10.1039/c7ta04599a

    Article  CAS  Google Scholar 

  23. Li XX, Han D, Lin TR, Cui Y, Peng J, Li JQ, Zhai ML (2018) Radiation synthesis and properties of imidazolium hexafluorophosphate poly(ionic liquid) gel electrolytes. Acta Polym Sin. https://doi.org/10.11777/j.issn1000-3304.2017.17210

    Article  Google Scholar 

  24. Lin TR, Shi MN, Huang FR, Peng J, Bai QW, Li JQ, Zhai ML (2018) One-pot synthesis of a double-network hydrogel electrolyte with extraordinarily excellent mechanical properties for a highly compressible and bendable flexible supercapacitor. ACS Appl Mater Interfaces 10:29684–29693. https://doi.org/10.1021/acsami.8b11377

    Article  CAS  Google Scholar 

  25. Chen J, Ao YY, Lin TR, Yang X, Peng J, Huang W, Li JQ, Zhai ML (2016) High-toughness polyacrylamide gel containing hydrophobic crosslinking and its double network gel. Polymer 87:73–80. https://doi.org/10.1016/j.polymer.2016.01.069

    Article  CAS  Google Scholar 

  26. Liu YD, Wu GZ, Long DW, Zhang GR (2005) Co-60 gamma-initiated polymerization of vinyl monomers in room temperature ionic liquid/THF mixed solutions. Polymer 46:8403–8409. https://doi.org/10.1016/j.polymer.2005.07.005

    Article  CAS  Google Scholar 

  27. Wang YM, Qiu JY, Peng J, Li JQ, Zhai ML (2017) One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. J Mater Chem A 5:12393–12399. https://doi.org/10.1039/c7ta02291c

    Article  CAS  Google Scholar 

  28. Minton TK, Wright ME, Tomczak SJ, Marquez SA, Shen LH, Brunsvold AL, Cooper R, Zhang JM, Vij V, Guenthner AJ, Petteys BJ (2012) Atomic oxygen effects on POSS polyimides in low earth orbit. ACS Appl Mater Interfaces 4:492–502. https://doi.org/10.1021/am201509n

    Article  CAS  Google Scholar 

  29. Lu Q, Dong L, Chen L, Fu J, Shi L, Li M, Zeng X, Lei H, Zheng F (2020) Inorganic-organic gel electrolytes with 3D cross-linking star-shaped structured networks for lithium ion batteries. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124708

    Article  Google Scholar 

  30. Zhang JF, Ma C, Liu JT, Chen LB, Pan AQ, Wei WF (2016) Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. J Membrane Sci 509:138–148. https://doi.org/10.1016/j.memsci.2016.02.049

    Article  CAS  Google Scholar 

  31. Wang SJ, Ao YY, Zhou HY, Yuan LY, Peng J, Zhai ML (2014) Research progress in radiation effects on ionic liquids. Acta Phys-Chim Sin 30:1597–1604. https://doi.org/10.3866/Pku.Whxb201406271

    Article  CAS  Google Scholar 

  32. Wang SO, Liu JZ, Yuan LY, Cui ZP, Peng J, Li JQ, Zhai ML, Liu WJ (2014) Towards understanding the color change of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide during gamma irradiation: an experimental and theoretical study. Phys Chem Chem Phys 16:18729–18735. https://doi.org/10.1039/c4cp01905a

    Article  CAS  Google Scholar 

  33. Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sources 161:573–579. https://doi.org/10.1016/j.jpowsour.2006.03.058

    Article  CAS  Google Scholar 

  34. Fernandez MD, Fernandez MJ, Cobos M (2016) Effect of polyhedral oligomeric silsesquioxane (POSS) derivative on the morphology, thermal, mechanical and surface properties of poly(lactic acid)-based nanocomposites. J Mater Sci 51:3628–3642. https://doi.org/10.1007/s10853-015-9686-5

    Article  CAS  Google Scholar 

  35. Jiang DW, Xing LX, Liu L, Sun SF, Zhang QB, Wu ZJ, Yan XR, Guo J, Huang YD, Guo ZH (2015) Enhanced mechanical properties and anti-hydrothermal ageing behaviors of unsaturated polyester composites by carbon fibers interfaced with POSS. Compos Sci Technol 117:168–175. https://doi.org/10.1016/j.compscitech.2015.05.011

    Article  CAS  Google Scholar 

  36. Yang SY, Fan HB, Jiao YQ, Cai ZD, Zhang P, Li YP (2017) Improvement in mechanical properties of NBR/LiClO4/POSS nanocomposites by constructing a novel network structure. Compos Sci Technol 138:161–168. https://doi.org/10.1016/j.compscitech.2016.12.003

    Article  CAS  Google Scholar 

  37. Yang CY, Shen JL, Wang CY, Fei HJ, Bao H, Wang GC (2014) All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. J Mater Chem A 2:1458–1464. https://doi.org/10.1039/c3ta13953k

    Article  CAS  Google Scholar 

  38. Zhu MS, Meng WJ, Huang Y, Huang Y, Zhi CY (2014) Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Appl Mater Interfaces 6:18901–18910. https://doi.org/10.1021/am504756u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Science Challenge Project (No. TZ2018004) and National Natural Science Foundation of China (No. 11575009 and 11875078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Lin, T., Wang, Y. et al. One-step radiation synthesis of novel star-shaped polymeric ionic liquid–POSS gel electrolytes with high ionic conductivity and mechanical properties for supercapacitor. J Mater Sci 55, 16347–16359 (2020). https://doi.org/10.1007/s10853-020-05162-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05162-9

Navigation