Skip to main content
Log in

Electrospinning SnO2 fibers with 3D interconnected structure for efficient soot catalytic combustion

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, SnO2 fibers with three-dimensional (3D) interconnected structure were successfully obtained by a simple electrospinning technique with both high quality and reproducibility. The microstructure, physicochemical properties were characterized (FT-IR, XRD, SEM, HR-TEM, TG-DSC, N2-BET, XPS, H2-TPR, O2-TPD) extensively. The catalytic activity was tested in temperature-programmed oxidation (TPO) of model soot. The influence of the heat-treated temperature on the catalysts physicochemical properties and reactivity was evaluated. The fibers were fluffy and self-supporting after heat-treated which could provide a beneficial environment favored by soot catalytic combustion. SnO2 fibers exhibited good thermal stability in phase structures and morphologies at least 900 °C. The SnF-500 exhibited the highest catalytic activity with T10, T50 and T90 at 410 °C, 450 °C and 474 °C. With the increase in the sintering temperature, the crystallinity of SnO2 fiber increases and the Sn–O-Sn bond strengthens, resulting in a decrease in the catalytic activity of the catalyst as the BET surface area and surface oxygen decrease. Our studies provide insights into SnO2 fibers for soot catalytic.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Matarrese R, Morandi S, Castoldi L, Villa P, Lietti L (2017) Removal of NOx and soot over Ce/Zr/K/Me (Me = Fe, Pt, Ru, Au) oxide catalysts. Appl Catal B Environ 201:318–330. https://doi.org/10.1016/j.apcatb.2016.07.013

    Article  CAS  Google Scholar 

  2. Ren W, Ding T, Yang Y, Xing L, Cheng Q, Zhao D, Zhang Z, Li Q, Zhang J, Zheng L, Jiang Z, Li X (2019) Identifying oxygen activation/oxidation sites for efficient soot combustion over silver catalysts interacted with nanoflower-like hydrotalcite-derived CoAlO metal oxides. ACS Catal 9(9):8772–8784. https://doi.org/10.1021/acscatal.9b01897

    Article  CAS  Google Scholar 

  3. Cao C, Xing L, Yang Y, Tian Y, Ding T, Zhang J, Hu T, Zheng L, Li X (2017) Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode. Appl Catal B Environ 218:32–45. https://doi.org/10.1016/j.apcatb.2017.06.035

    Article  CAS  Google Scholar 

  4. Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 8(1):E69–E74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19

    Article  Google Scholar 

  5. Matti Maricq M (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci 38(11):1079–1118. https://doi.org/10.1016/j.jaerosci.2007.08.001

    Article  CAS  Google Scholar 

  6. Kumar PA, Tanwar MD, Russo N, Pirone R, Fino D (2012) Synthesis and catalytic properties of CeO2 and Co/CeO2 nanofibres for diesel soot combustion. Catal Today 184(1):279–287. https://doi.org/10.1016/j.cattod.2011.12.025

    Article  CAS  Google Scholar 

  7. Fino D, Bensaid S, Piumetti M, Russo N (2016) A review on the catalytic combustion of soot in diesel particulate filters for automotive applications: from powder catalysts to structured reactors. Appl Catal A General 509:75–96. https://doi.org/10.1016/j.apcata.2015.10.016

    Article  CAS  Google Scholar 

  8. Hong S, Lee G (2000) Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts. Catal Today 63(2):397–404. https://doi.org/10.1016/S0920-5861(00)00484-3

    Article  CAS  Google Scholar 

  9. Wu Q, Xiong J, Zhang Y, Mei X, Wei Y, Zhao Z, Liu J, Li J (2019) Interaction-induced self-assembly of Au@La2O3 core-shell nanoparticles on La2O2CO3 nanorods with enhanced catalytic activity and stability for soot oxidation. ACS Catal 9(4):3700–3715. https://doi.org/10.1021/acscatal.9b00107

    Article  CAS  Google Scholar 

  10. Fang F, Feng N, Zhao P, Chen C, Li X, Meng J, Liu G, Chen L, Wan H, Guan G (2019) In situ exsolution of Co/CoOx core-shell nanoparticles on double perovskite porous nanotubular webs: A synergistically active catalyst for soot efficient oxidation. Chem Eng J 372:752–764. https://doi.org/10.1016/j.cej.2019.04.176

    Article  CAS  Google Scholar 

  11. Wu Q, Jing M, Wei Y, Zhao Z, Zhang X, Xiong J, Liu J, Song W, Li J (2019) High-efficient catalysts of core-shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: The effect of strong Pt-TMO interaction. Appl Catal B Environ 244:628–640. https://doi.org/10.1016/j.apcatb.2018.11.094

    Article  CAS  Google Scholar 

  12. Li Z, Meng M, Li Q, Xie Y, Hu T, Zhang J (2010) Fe-substituted nanometric La0.9K0.1Co1−xFexO3−δ perovskite catalysts used for soot combustion, NOx storage and simultaneous catalytic removal of soot and NOx. Chem Eng J 164(1):98–105. https://doi.org/10.1016/j.cej.2010.08.036

  13. Xie Y, Galvez ME, Matynia A, Da Costa P (2018) Experimental investigation on the influence of the presence of alkali compounds on the performance of a commercial Pt–Pd/Al2O3 diesel oxidation catalyst. Clean Technol Environ Policy 20(4):715–725. https://doi.org/10.1007/s10098-017-1412-3

    Article  CAS  Google Scholar 

  14. Kim MJ, Han G, Lee SH, Jung HW, Choung JW, Kim CH, Lee K (2020) CeO2 promoted Ag/TiO2 catalyst for soot oxidation with improved active oxygen generation and delivery abilities. J Hazardous Mater 384:121341. https://doi.org/10.1016/j.jhazmat.2019.121341

    Article  CAS  Google Scholar 

  15. Bergermayer W, Tanaka I (2004) Reduced SnO2 surfaces by first-principles calculations. Appl Phys Lett 84(6):909–911. https://doi.org/10.1063/1.1646460

    Article  CAS  Google Scholar 

  16. Kilic C, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88(9):095501. https://doi.org/10.1103/PhysRevLett.88.095501

    Article  CAS  Google Scholar 

  17. Manassidis I, Goniakowski J, Kantorovich LN, Gillan MJ (1995) The structure of the stoichiometric and reduced SnO2 (ll0) surface. Surface Sci 339(3):258–271. https://doi.org/10.1016/0039-6028(95)00677-X

    Article  CAS  Google Scholar 

  18. Rao C, Shen J, Wang F, Peng H, Xu X, Zhan H, Fang X, Liu J, Liu W, Wang X (2018) SnO2 promoted by alkali metal oxides for soot combustion: the effects of surface oxygen mobility and abundance on the activity. Appl Surface Sci 435:406–414. https://doi.org/10.1016/j.apsusc.2017.11.109

    Article  CAS  Google Scholar 

  19. Brow I, Patterson WR (1983) Reactivity of tin oxide and some antimony-tin oxide catalysts for the oxidation of methane and the isotopic exchange of oxygen. J Chem Soc 79:1431–1449. https://doi.org/10.1039/F19837901431

    Article  Google Scholar 

  20. Mars P, van Krevelen DW (1954) Oxidations carried out by means of vanadium oxide catalysts. Chem Eng Sci 3:41–59. https://doi.org/10.1016/S0009-2509(54)80005-4

    Article  CAS  Google Scholar 

  21. Inomata Y, Albrecht K, Yamamoto K (2017) Size-dependent oxidation state and CO oxidation activity of tin oxide clusters. ACS Catal 8(1):451–456. https://doi.org/10.1021/acscatal.7b02981

    Article  CAS  Google Scholar 

  22. Sun Y, Lei F, Gao S, Pan B, Zhou J, Xie Y (2013) Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide. Angew Chem Int Ed 52(40):10569–10572. https://doi.org/10.1002/anie.201305530

    Article  CAS  Google Scholar 

  23. Lu Z, Ma D, Yang L, Wang X, Xu G, Yang Z (2014) Direct CO oxidation by lattice oxygen on the SnO2 (110) surface: a DFT study. Phys Chem Chem Phys 16(24):12488–12494. https://doi.org/10.1039/C4CP00540F

    Article  CAS  Google Scholar 

  24. Kocemba I, Rynkowski JM (2011) The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catal Today 169(1):192–199. https://doi.org/10.1016/j.cattod.2010.09.015

    Article  CAS  Google Scholar 

  25. Kim WJ, Lee SW, Sohn Y (2015) Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles. Scientific Reports 5:13448. https://doi.org/10.1038/srep13448

    Article  CAS  Google Scholar 

  26. Sohn Y (2014) Structural/optical properties and CO oxidation activities of SnO2 nanostructures. J Am Ceramic Soc 97(4):1303–1310. https://doi.org/10.1111/jace.12769

    Article  CAS  Google Scholar 

  27. Peng H, Peng Y, Xu X, Fang X, Liu Y, Cai J, Wang X (2015) SnO2 nano-sheet as an efficient catalyst for CO oxidation. Chin J Catal 36:2004–2010. https://doi.org/10.1016/S1872-2067(15)60926-3

    Article  CAS  Google Scholar 

  28. Sun Q, Xu X, Peng H, Fang X, Liu W, Ying J, Yu F, Wang X (2016) SnO2-based solid solutions for CH4 deep oxidation: quantifying the lattice capacity of SnO2 using an X-ray diffraction extrapolation method. Chin J Catal 37:1293–1302. https://doi.org/10.1016/S1872-2067(15)61119-6

    Article  CAS  Google Scholar 

  29. Peng L, Xu J, Fang X, Liu W, Xu X, Liu L, Li Z, Peng H, Zheng R (2018) Wang X (2018) SnO2 based catalysts with low-temperature performance for oxidative coupling of methane: insight into the promotional effects of alkali-metal oxides. Eur J Inorganic Chem 17:1787–1799. https://doi.org/10.1002/ejic.201701440

    Article  CAS  Google Scholar 

  30. Xu X, Zhang R, Zeng X, Han X, Li Y, Liu Y, Wang X (2013) Effects of La, Ce, and Y oxides on SnO2 catalysts for CO and CH4 oxidation. ChemCatChem 5(7):2025–2036. https://doi.org/10.1002/cctc.201200760

    Article  CAS  Google Scholar 

  31. Zeng X, Zhang R, Xu X, Wang X (2012) Study on ceria-modified SnO2 for CO and CH4 oxidation. J Rare Earths 30(10):1013–1019. https://doi.org/10.1016/S1002-0721(12)60171-9

    Article  CAS  Google Scholar 

  32. Liu Y, Liu Y, Guo Y, Xu J, Xu X, Fang X, Liu J, Chen W, Arandiyan H, Wang X (2018) Tuning SnO2 surface area for catalytic toluene deep oxidation: on the inherent factors determining the reactivity. Ind Eng Chem Res 57(42):14052–14063. https://doi.org/10.1021/acs.iecr.8b03401

    Article  CAS  Google Scholar 

  33. Guo Y, Liang J, Liu Y, Liu Y, Xu X, Fang X, Zhong W, Wang X (2019) Identifying surface active sites of SnO2: roles of surface O2–, O22– anions and acidic species played for toluene deep oxidation. Ind Eng Chem Res 58(40):18569–18581. https://doi.org/10.1021/acs.iecr.9b03687

    Article  CAS  Google Scholar 

  34. Liang C, Kim B, Yang S, Liu Y, Francisco Woellner C, Li Z, Vajtai R, Yang W, Wu J, Kenis PJA, Ajayan PM (2018) High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. J Mate Chem A 6(22):10313–10319. https://doi.org/10.1039/C8TA01367E

    Article  CAS  Google Scholar 

  35. Li Q, Fu J, Zhu W, Chen Z, Shen B, Wu L, Xi Z, Wang T, Lu G, Zhu J, Sun S (2017) Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J Am Chem Soc 139(12):4290–4293. https://doi.org/10.1021/jacs.7b00261

    Article  CAS  Google Scholar 

  36. Atribak I, López-Suárez F E, Bueno-López A, García-García A (2011) New insights into the performance of ceria-zirconia mixed oxides as soot combustion catalysts. Identification of the role of “active oxygen”production. Catal Today 176(1):404–408. https://doi.org/10.1016/j.cattod.2010.11.023

  37. Setten van BAAL, Schouten JM, Makkee M, Moulijn JA, (2000) Realistic contact for soot with an oxidation catalyst for laboratory studies. Appl Catal B Environ 28(3):253–257. https://doi.org/10.1016/S0926-3373(00)00182-X

    Article  Google Scholar 

  38. Setiabudi A, Allaart NK, Makkee M, Moulijn JA (2005) In situ visible microscopic study of molten Cs2SO4·V2O5-soot system: physical interaction, oxidation rate, and data evaluation. Appl Catal B Environ 60(3–4):233–243. https://doi.org/10.1016/j.apcatb.2005.03.005

    Article  CAS  Google Scholar 

  39. Neeft JPA, Makkee M, Moulijn JA (1996) Metal oxides as catalysts for the oxidation of soot. Chem Eng J Biochem Eng J 64(2):295–302. https://doi.org/10.1016/S0923-0467(96)03138-7

    Article  CAS  Google Scholar 

  40. Zhang GL, Cheng X, Yang D, Yu G, Ma HM, Wang J, Wu HY, Yang ZG, Loofa sponage derived multi-tubular CuO/CeO2-ZrO2 with hierarchical porous structure for effective soot catalytic oxidation. Fuel 258:116202. https://doi.org/10.1016/j.fuel.2019.116202

  41. Gao Y, Duan A, Liu S, Wu X, Li M (2007) Study of Ag/CexNd1−xO2 nanocubes as soot oxidation catalysts for gasoline particulate filters:balancing catalyst activity and stability by Nd doping. Appl Catal B Environ 203:116–126. https://doi.org/10.1016/j.apcatb.2016.10.006

    Article  CAS  Google Scholar 

  42. Lee C, Park JI, Shul YG, Einaga H, Teraoka Y (2015) Ag supported on electrospun macro-structure CeO2 fibrous mats for diesel soot oxidation. Appl Catal B Environ 174–175:185–192. https://doi.org/10.1016/j.apcatb.2015.03.008

    Article  CAS  Google Scholar 

  43. Yu X, Li J, Wei Y, Zhao Z, Liu J, Jin B, Duan A, Jiang G (2014) Three-dimensionally ordered macroporous MnxCe1-xOδand Pt/Mn0.5Ce0.5Oδ catalysts: synthesis and catalytic performance for soot oxidation. Ind Eng Chem Res 53:9653–9664. https://doi.org/10.1021/ie500666m

    Article  CAS  Google Scholar 

  44. Yu G, Wang J, Liu J, Cheng X, Ma H, Wu H, Yang Z, Zhang G, Sun X (2019) Paper structured catalyst based on CeO2-ZrO2 fibers for soot combustion. Catal Lett 149:3543–3555. https://doi.org/10.1007/s10562-019-02891-8

    Article  CAS  Google Scholar 

  45. Yu G, Ma H, Wang J, Qin S, Yang Z, Li Y (2020) Highly flexible and active potassium-supported sepiolite paper catalysts for soot oxidation. Catal Sci Technol 10:1875. https://doi.org/10.1039/C9CY02609F

    Article  CAS  Google Scholar 

  46. Kumar PA, Tanwar MD, Bensaid S, Russo N, Fino D (2012) Soot combustion improvement in diesel particulate filters catalyzed with ceria nanofibers. Chem Eng J 207–208:258–266. https://doi.org/10.1016/j.cej.2012.06.096

    Article  CAS  Google Scholar 

  47. Bensaid S, Russo N, Fino D (2013) CeO2 catalysts with fibrous morphology for soot oxidation: The importance of the soot-catalyst contact conditions. Catal Today 216:57–63. https://doi.org/10.1016/j.cattod.2013.05.006

    Article  CAS  Google Scholar 

  48. Li F, Song HM, Yu WS, Ma QL, Dong XT, Wang JX, Liu GX (2020) Electrospun TiO2/SnO2 Janus nanofibers and its application in ethanol sensing. Mater Lett 262:127070. https://doi.org/10.1016/j.matlet.2019.127070

    Article  CAS  Google Scholar 

  49. Shu M, Li X (2019) Electrospun MnxCo0.5-xSn0.5O2 and SnO2 porous nanofibers and nanoparticles as anode materials for lithium-ion battery. J Nanopart Res 21:179. https://doi.org/10.1007/s11051-019-4626-y

  50. Wang W, Liang YH, Kang YF, Liu LS, Xu ZW, Tian X, Mai W, Fu HJ, Lv HM, Teng KY, Jiao XN, Li FY (2019) Carbon-coated SnO2@carbon nanofibers produced by electrospinning-electrospraying method for anode materials of lithium-ion batteries. Mater Chem Phys 223:762–770. https://doi.org/10.1016/j.matchemphys.2018.11.066

    Article  CAS  Google Scholar 

  51. Pascariu P, Cojocaru C, Olaru N, Airinei A (2019) Photocatalytic activity of ZnO-SnO2 ceramic nanofibers for RhB dye degradation: experimental design, modeling, and process optimization. Phys Status Solidi B 256:1800474. https://doi.org/10.1002/pssb.201800474

    Article  CAS  Google Scholar 

  52. Loría-Bastarrachea MI, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Vázquez-Torres H, Ávila-Ortega A (2011) A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J Thermal Anal Calorimetry 104(2):737–742. https://doi.org/10.1007/s10973-010-1061-9

    Article  CAS  Google Scholar 

  53. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857. https://doi.org/10.1021/ja800745y

    Article  CAS  Google Scholar 

  54. Hwang SM, Lim Y, Kim J, Heo Y, Lim JH, Yamauchi Y, Park M, Kim Y, Dou SX, Kim JH (2014) A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy 10:53–62. https://doi.org/10.1016/j.nanoen.2014.08.020

    Article  CAS  Google Scholar 

  55. Hassouna F, Therias S, Mailhot G, Gardette J (2009) Photooxidation of poly(N-vinylpyrrolidone) (PVP) in the solid state and in aqueous solution. Polymer Degradation Stability 94(12):2257–2266. https://doi.org/10.1016/j.polymdegradstab.2009.08.007

    Article  CAS  Google Scholar 

  56. Kheshtzar I, Ghorbani M, Gatabi MP, Lashkenari MS (2018) Facile synthesis of smartaminosilane modified-SnO2/porous silica nanocomposite for high efficiency removal of lead ions and bacterial inactivation. J Hazardous Mater 359:19–30. https://doi.org/10.1016/j.jhazmat.2018.07.028

    Article  CAS  Google Scholar 

  57. Thornton EW, Harrison PG (1975) Tin oxide surfaces Part 1. -surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide. J Chem Soc 71:461–472. https://doi.org/10.1039/F19757100461

    Article  CAS  Google Scholar 

  58. Orel B, Lavrencic-Stangar U, Crnjak-Orel Z, Bukovec P, Kosec M (1994) Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 prepared via inorganic sol-gel route. J Non-Crystalline Solids 167:272–288. https://doi.org/10.1016/0022-3093(94)90250-X

    Article  CAS  Google Scholar 

  59. Amalric-Popescu D, Bozon-Verduraz F (2001) Infrared studies on SnO2 and Pd/SnO2. Catal Today 70(1):139–154. https://doi.org/10.1016/S0920-5861(01)00414-X

    Article  CAS  Google Scholar 

  60. Li Z, Zhao Q, Fan W, Zhan J (2011) Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale 3(4):1646–1652. https://doi.org/10.1039/C0NR00728E

    Article  CAS  Google Scholar 

  61. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28–29. https://doi.org/10.1021/ja0777584

    Article  CAS  Google Scholar 

  62. Nga NK, Hong PTT, Lam TD, Huy TQ (2013) A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal. J Colloid Interface Sci 398:210–216. https://doi.org/10.1016/j.jcis.2013.02.018

    Article  CAS  Google Scholar 

  63. Xu C, Shi S, Wang X, Zhou H, Wang L, Zhu L, Zhang G, Xu D (2020) Electrospun SiO2-MgO hybrid fibers for heavy metal removal: characterization and adsorption study of Pb(II) and Cu(II). J Hazardous Mater 381:120974. https://doi.org/10.1016/j.jhazmat.2019.120974

    Article  CAS  Google Scholar 

  64. Sasikala R, Gupta NM, Kulshreshtha SK (2001) Temperature-programmed reduction and CO oxidation studies over Ce-Sn mixed oxides. Catal Lett 71(1):69–73. https://doi.org/10.1023/A:1016656408728

    Article  CAS  Google Scholar 

  65. Zhao MW, Shen MQ, Wang J (2007) Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2. J Catal 248:258–267. https://doi.org/10.1016/j.jcat.2007.03.005

    Article  CAS  Google Scholar 

  66. Liu C, Xian H, Jiang Z, Wang LH, Zhang J, Zheng LR, Tan YS, Li XG (2015) Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Appl Catal B Environ 176–177:542–555. https://doi.org/10.1016/j.apcatb.2015.04.04

    Article  Google Scholar 

  67. Luo J, Xu C (1989) XPS examination of tin oxide on float glass surface. J Non-Crystalline Solids 119:37–40. https://doi.org/10.1016/0022-3093(90)90238-H

    Article  Google Scholar 

  68. Huy TH, Bui DP, Kang F, Wang Y, Liu S, Thi CM, You S, Chang G, Pham VV (2019) SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere 215:323–332. https://doi.org/10.1016/j.chemosphere.2018.10.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Nos. 51372140, 51472144), Shandong University Young Scholars Program (2016WLJH27) and the Fundamental Research Funds for the Central Universities (Grant No. 2082019014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinqiang Wang or Gang Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Shi, S., Xie, Y. et al. Electrospinning SnO2 fibers with 3D interconnected structure for efficient soot catalytic combustion. J Mater Sci 55, 16083–16095 (2020). https://doi.org/10.1007/s10853-020-05198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05198-x

Navigation