Skip to main content

Advertisement

Log in

All-solid-state flexible supercapacitor using graphene/g-C3N4 composite capacitor electrodes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible supercapacitors using graphene have been intensively investigated due to their potential applications for wearable and smart devices. In order to avoid stacking between graphene layers, spacers such as carbon fibers and metal oxide particles are often introduced. Such composites enhance effectively the specific surface area of the electrodes and eventually supercapacitor performance. In present work, the graphene/g-C3N4 composite is fabricated and further employed as the supercapacitor electrode. The atomic interaction between C and N of g-C3N4 and O of graphene oxide during the post-reduction in graphene oxide is found to affect device performance. The devices fabricated using the graphene/g-C3N4 composite electrode exhibit a specific area capacitance of 1500 mF cm−2, and 95% of initial capacitance after 5000 cycles and a maximum energy density of 0.075 mWh cm−2. These all-solid-state flexible supercapacitors are thus promising for miniaturized electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jang H, Park YJ, Chen X, Das T, Kim MS, Ahn JH (2016) Graphene-based flexible and stretchable electronics. Adv Mater 28:4184–4202. https://doi.org/10.1002/adma.201504245

    Article  CAS  Google Scholar 

  2. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2016) 3D Printing of shape memory polymers for flexible electronic devices. Adv Mater 28:4166–4166. https://doi.org/10.1002/adma.201670148

    Article  CAS  Google Scholar 

  3. Li Z, Gadipelli S, Li H et al (2020) Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat Energy 5:160–168. https://doi.org/10.1038/s41560-020-0560-6

    Article  CAS  Google Scholar 

  4. El-Kady M, Shao Y, Kaner R (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1:1–14. https://doi.org/10.1038/natrevmats.2016.33

    Article  CAS  Google Scholar 

  5. Shi Y, Liu G, Jin R, Xu H, Gao S (2019) Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review. Carbon Energy 2:253–275. https://doi.org/10.1002/cey2.19

    Article  CAS  Google Scholar 

  6. Xiong Z, Liao C, Han W, Wang X (2015) Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater 30:4469–4475. https://doi.org/10.1002/adma.201501983

    Article  CAS  Google Scholar 

  7. Kou L, Huang T, Zheng B et al (2014) Coaxial wet-spun yarn supercapacitors for High-energy density and safe wearable electronics. Nat Commun 5:3754. https://doi.org/10.1038/ncomms4754

    Article  CAS  Google Scholar 

  8. Wang Q, Wei T, Qu L, Sheng L, Liang Y, Jiang L et al (2015) Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivityn pressure sensors. Adv Funct Mater 25:6545–6551. https://doi.org/10.1002/adfm.201502960

    Article  CAS  Google Scholar 

  9. Wang R, Chaohe Xu, Lee J-M (2016) High performance asymmetric supercapacitors: new NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 19:210–221. https://doi.org/10.1016/j.nanoen.2015.10.030

    Article  CAS  Google Scholar 

  10. Ma H, Zhou Q, Wu M, Zhang M, Yao B, Gao T et al (2018) Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. J Mater Chem A 15:6587–6594. https://doi.org/10.1039/C7TA10843E

    Article  Google Scholar 

  11. Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S (2014) Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 26:4855–4862. https://doi.org/10.1002/adma.201401513

    Article  CAS  Google Scholar 

  12. Wang G, Sun X, Lu F, Sun H, Yu M, Jiang W et al (2012) Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8:452–459. https://doi.org/10.1002/smll.201101719

    Article  CAS  Google Scholar 

  13. Yan J, Chang E, Ren K et al (2017) Flexible mxene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264. https://doi.org/10.1002/adfm.201701264

    Article  CAS  Google Scholar 

  14. Kong L, Zhang C, Wang J, Qiao W, Ling L, Long D (2015) Free-standing t-nb2o5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for li-ion intercalation pseudocapacitor. ACS Nano 9:11200–11208. https://doi.org/10.1021/acsnano.5b04737

    Article  CAS  Google Scholar 

  15. Zhao M, Zhang Q, Huang J, Tian G, Nie J, Peng H (2014) Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun 5:3410. https://doi.org/10.1038/ncomms4410

    Article  CAS  Google Scholar 

  16. Shan X, Guo Z, Zhang X et al (2019) Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced lithium-sulfur batteries. Chin J Mech Eng 32:217–222. https://doi.org/10.1186/s10033-019-0374-2

    Article  CAS  Google Scholar 

  17. Cao X, Yin Z, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 7:1850–1865. https://doi.org/10.1039/C4EE00050A

    Article  CAS  Google Scholar 

  18. Yu D, Ge L, Wei X, Wu B, Ran J, Wang H et al (2017) A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes. J Mater Chem A 5:16865–16872. https://doi.org/10.1039/C7TA04074A

    Article  CAS  Google Scholar 

  19. Kong Q, Liu Z, Guo J et al (2014) Hierarchical graphene–carbon fiber composite paper as a flexible lateral heat spreader. Adv Funct Mater 24:4222–4228. https://doi.org/10.1002/adfm.201304144

    Article  CAS  Google Scholar 

  20. Jiang L, Sheng L, Long C, Fan Z (2015) Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11:471–480. https://doi.org/10.1016/j.nanoen.2014.11.007

    Article  CAS  Google Scholar 

  21. Zhang M, Cheng C, Simon G, Li D (2018) Ion-transport experiments to probe the nanostructure of graphene/polymer membranes. Small Methods 2:1800187. https://doi.org/10.1002/smtd.201800187

    Article  CAS  Google Scholar 

  22. Jiao X, Hao Q, Xia X, Lei W, Ouyang Y, Ye H, Mandler D (2018) Free-standing hybrid graphene paper encapsulating nanostructures for high cycle-life supercapacitors. Chemsuschem 11:907–915. https://doi.org/10.1002/cssc.201702283

    Article  CAS  Google Scholar 

  23. Shao Y, El-Kady MF, Lin CW et al (2016) 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv Mater 28:6719–6726. https://doi.org/10.1002/adma.201506157

    Article  CAS  Google Scholar 

  24. Li L, Song B, Maurer L, Lin Z, Lian G, Tuan C et al (2016) Molecular engineering of aromatic amine spacers for high-performance graphene-based supercapacitors. Nano Energy 21:276–294. https://doi.org/10.1016/j.nanoen.2016.01.028

    Article  CAS  Google Scholar 

  25. Chen K, Liu F, Song S, Xue D (2014) Water crystallization to create ice spacers between graphene oxide sheets for highly electroactive graphene pape. CrystEngComm 16:7771–7776. https://doi.org/10.1039/c4ce01030b

    Article  CAS  Google Scholar 

  26. Li T, Li N, Liu J, Cai K, Foda MF, Lei X et al (2015) Synthesis of functionalized 3d porous graphene using both ionic liquid and sio2 spheres as "spacers" for high-performance application in supercapacitors. Nanoscale 7:659–669. https://doi.org/10.1039/c4nr05473c

    Article  CAS  Google Scholar 

  27. Thebo KH, Qian X, Zhang Q, Chen L, Cheng HM, Ren W (2018) Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun 9:1486. https://doi.org/10.1038/s41467-018-03919-0

    Article  CAS  Google Scholar 

  28. Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 12:2101–2107. https://doi.org/10.1021/jz500546b

    Article  CAS  Google Scholar 

  29. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901. https://doi.org/10.1021/la904023j

    Article  CAS  Google Scholar 

  30. Chen X, Zhu X, Xiao Y, Yang X (2015) PEDOT/g-C3N4 binary electrode material for supercapacitors. J Electroanal Chem 746:99–104. https://doi.org/10.1016/j.jelechem.2015.02.004

    Article  CAS  Google Scholar 

  31. Xu L, Xia J, Xu H, Yin S, Wang K, Huang L et al (2014) Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance. J Power Sources 245:866–874. https://doi.org/10.1016/j.jpowsour.2013.07.014

    Article  CAS  Google Scholar 

  32. Yu H, Shang L, Bian T, Shi R, Zhang T (2016) Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv Mater 28:5140–5140. https://doi.org/10.1002/adma.201600398

    Article  CAS  Google Scholar 

  33. Li X, Antonietti M (2013) Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott–Schottky heterojunctions for catalysis. Chem Soc Rev 42:6593–6604. https://doi.org/10.1039/c3cs60067j

    Article  CAS  Google Scholar 

  34. Hou Y, Zuo F, Dagg AP, Liu J, Feng P (2014) Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater 26:5043–5049. https://doi.org/10.1002/adma.201401032

    Article  CAS  Google Scholar 

  35. Ding Y, Tang Y, Yang L, Zeng Y, Yuan J, Liu T et al (2016) Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J Mater Chem A 4:14307–14315. https://doi.org/10.1039/C6TA05267C

    Article  CAS  Google Scholar 

  36. Chen Q, Zhao Y, Huang X, Chen N, Qu L (2015) Three-dimensional graphitic carbon nitride functionalized graphene-based high-performance supercapacitors. J Mater Chem A 3:6761–6766. https://doi.org/10.1039/C5TA00734H

    Article  CAS  Google Scholar 

  37. Zhao B, Liu P, Jiang Y, Pan D, Tao H, Song J et al (2012) Supercapacitor performances of thermally reduced graphene oxide. J Power Sources 198:423–427. https://doi.org/10.1016/j.jpowsour.2011.09.074

    Article  CAS  Google Scholar 

  38. Ferrari A, Basko D (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  39. Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539. https://doi.org/10.1038/ncomms2555

    Article  CAS  Google Scholar 

  40. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401. https://doi.org/10.1039/C1JM12620B

    Article  CAS  Google Scholar 

  41. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921. https://doi.org/10.1016/j.carbon.2011.09.053

    Article  CAS  Google Scholar 

  42. Ge L, Han C (2012) Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl Catal B Environ 117:268–274. https://doi.org/10.1016/j.apcatb.2012.01.021

    Article  CAS  Google Scholar 

  43. Zhang S, Hang N, Zhang Z, Yue H, Yang W (2017) Preparation of g-C3N4/ graphene composite for detecting NO2 at room temperature. Nanomaterials 7:12. https://doi.org/10.3390/nano7010012

    Article  CAS  Google Scholar 

  44. Donghua W, Yanzhong W, You C, Wei L, Huiqi W, Peihua Z et al (2018) Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formedg-C3N4 as a template for supercapacitor electrodes. Electrochim Acta 283:132–140. https://doi.org/10.1016/j.electacta.2018.06.151

    Article  CAS  Google Scholar 

  45. Shi W, Zhu J, Sim D, Tay Y, Lu Z, Zhang X et al (2011) Achieving high specific charge capacitances in Fe3O 4/reduced graphene oxide nanocomposites. J Mater Chem 21:3422–3427. https://doi.org/10.1039/c0jm03175e

    Article  CAS  Google Scholar 

  46. Yu J, Wu J, Wang H, Zhou A, Huang C, Bai H, Li L (2016) Metallic fabrics as the current collector for high-performance graphene-based flexible solid-state supercapacitor. ACS Appl Mater Interfaces 8:4724–4729. https://doi.org/10.1021/acsami.5b12180

    Article  CAS  Google Scholar 

  47. Huang R, Huang M, Li X, An F, Koratkar N, Yu Z (2018) Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv Mater 30:1707025. https://doi.org/10.1002/adma.201707025

    Article  CAS  Google Scholar 

  48. Weng Z, Su Y, Wang D, Li F, Du J, Cheng H (2011) Graphene–cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922. https://doi.org/10.1002/aenm.201100312

    Article  CAS  Google Scholar 

  49. Dong L, Xu C, Li Y, Pan Z, Liang G, Zhou E, Kang F, Yang Q (2016) Breathable and wearable energy storage based on highly flexible paper electrodes. Adv Mater 28:9313–9319. https://doi.org/10.1002/adma.201602541

    Article  CAS  Google Scholar 

  50. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6:470–476. https://doi.org/10.1039/C2EE23977A

    Article  CAS  Google Scholar 

  51. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330. https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  52. Lindfors T, Boeva Z, Latonen R (2014) Electrochemical synthesis of poly (3,4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxide. Rsc Adv 4:25279–25286. https://doi.org/10.1039/C4RA03423F

    Article  CAS  Google Scholar 

  53. Ye X, Zhu Y, Tang Z, Wan Z, Jia C (2017) In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance. J Power Sources 360:48–58. https://doi.org/10.1016/j.jpowsour.2017.05.103

    Article  CAS  Google Scholar 

  54. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26:2676–2682. https://doi.org/10.1002/adma.201304756

    Article  CAS  Google Scholar 

  55. Xu Y, Lin Z, Huang X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049. https://doi.org/10.1021/nn4000836

    Article  CAS  Google Scholar 

  56. Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271. https://doi.org/10.1021/am507999s

    Article  CAS  Google Scholar 

  57. Sumboja A, Foo C, Wang X, Lee PS (2013) Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 25:2809–2815. https://doi.org/10.1002/adma.201205064

    Article  CAS  Google Scholar 

  58. Ramadoss A, Yoon KY, Kwak MJ, Kim SI, Ryu ST, Jang J (2017) Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J Power Sources 337:159–165. https://doi.org/10.1016/j.jpowsour.2016.10.091

    Article  CAS  Google Scholar 

  59. He S, Zhang R, Zhang C, Liu M, Gao X, Ju J, Li L, Chen W (2015) Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage. J Power Sources 299:408–416. https://doi.org/10.1016/j.jpowsour.2015.09.029

    Article  CAS  Google Scholar 

  60. Wang C, Zhan Y, Wu L, Li Y, Liu J (2014) High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm. Nanotechnology 25:305401. https://doi.org/10.1088/0957-4484/25/30/305401

    Article  CAS  Google Scholar 

  61. Zhou H, Han G (2016) One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim Acta 192:448–455. https://doi.org/10.1016/j.electacta.2016.02.015

    Article  CAS  Google Scholar 

  62. Ni D, Chen Y, Song H, Liu C, Yang X, Cai K (2019) Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors. J Mater Chem A 7:1323–1333. https://doi.org/10.1039/C8TA08814D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant Nos. 61604017, 61574021), The science and technology projects in Jilin Province Department of Education (JJKH20191290KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueyu Zhang or Xin Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Zhang, X., Lü, W. et al. All-solid-state flexible supercapacitor using graphene/g-C3N4 composite capacitor electrodes. J Mater Sci 55, 16334–16346 (2020). https://doi.org/10.1007/s10853-020-05156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05156-7

Navigation