Skip to main content
Log in

A novel amorphous CoSx/NH2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are a new type of porous crystal materials that have been widely used in various fields. Owing to their adjustable porous structure, MOF photocatalysts with high catalytic activity have become a research hotspot. In this study, NH2-MIL-125/CoSx samples were investigated as a novel visible light-responsive catalyst for the removal of organic dye. The NH2-MIL-125/CoSx-20 composites showed the best photodegradation efficiency, where photodegradation of the rhodamine B reached 95.4% in 45 min. CoSx was able to effectively extend the wavelength absorption range of NH2-MIL-125 and effectively separate the photogenerated electrons and holes and that could lead to the improved photocatalytic performance of the composites. The reactive superoxide radical (·O2−) was identified as the main active species using reactive species capture experiments, and a reasonable photocatalytic mechanism was proposed. This paper is intended to guide the development of organic–inorganic hybrid materials for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang YK, Xiong ZS, Yang LM, Ren Z, Shao PH, Shi H, Xiao X, Pavlostathis SG, Fang LL, Luo XB (2019) Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. Water Res 166:115076

    CAS  Google Scholar 

  2. Yang LM, Yi GP, Hou YN, Cheng HY, Luo XB, Pavlostathis SG, Luo SL, Wang AJ (2019) Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosens Bioelectron 141:111444

    CAS  Google Scholar 

  3. Xiao JD, Jiang HL (2019) Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res 52:356–366

    CAS  Google Scholar 

  4. Xia W, Wu JC, Hu JC, Sun SS, Li MD, Liu HF, Lan MH, Wang F (2019) Highly efficient photocatalytic conversion of CO2 to CO catalyzed by surface-ligand-removed and Cd-Rich CdSe quantum dots. Chemsuschem 12:4617–4622

    CAS  Google Scholar 

  5. Hu JC, Sun SS, Li MD, Wu X, Wu J, Liu HF, Wang F (2019) A biomimetic self-assembled cobaloxime@CdS/rGO hybrid for boosting photocatalytic H2 production. Chem Commun 55:14490–14493

    CAS  Google Scholar 

  6. Hassan FU, Ahmed U, Muhyuddin M, Yasir M, Ashiq MN, Basit MA (2019) Tactical modification of pseudo-SILAR process for enhanced quantum-dot deposition on TiO2 and ZnO nanoparticles for solar energy applications. Mater Res Bull 120:110588

    Google Scholar 

  7. Sridharan K, Jang E, Park JH, Kim JH, Lee JH, Park TJ (2015) Silver quantum cluster (Ag9)-grafted graphitic carbon nitride nanosheets for photocatalytic hydrogen generation and dye degradation. Chem Eur J 21:9126–9132

    CAS  Google Scholar 

  8. Ali L, Muhyuddin M, Mullani N, Kim DW, Basit MA, Park TJ (2020) Modernized H2S-treatment of TiO2 nanoparticles: Improving quantum-dot deposition for enhanced photocatalytic performance. Curr Appl Phys 20:384–390

    Google Scholar 

  9. Zhao JH, Liu LW, Li K, Li T, Liu FT (2019) Conductive Ti3C2 and MOF-derived CoSx boosting the photocatalytic hydrogen production activity of TiO2. CrystEngComm 21:2416–2421

    CAS  Google Scholar 

  10. Mao Q, Chen JM, Chen HR, Chen ZJ, Chen JY, Li YW (2019) Few-layered 1T-MoS2-modified ZnCoS solid-solution hollow dodecahedra for enhanced photocatalytic hydrogen evolution. J Mater Chem A 7:8472–8484

    CAS  Google Scholar 

  11. Chen F, Luo W, Mo YP, Yu HG, Cheng B (2018) In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Appl Surf Sci 430:448–456

    CAS  Google Scholar 

  12. Fu JW, Bie CB, Cheng B, Yu JG, Zhang LY (2018) Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4. ACS Sustain Chem Eng 6:2767–2779

    CAS  Google Scholar 

  13. Kornienko N, Resasco J, Becknell N, Jiang CM, Liu YS, Nie KQ, Sun XH, Guo JH, Leone SR, Yang PD (2015) Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J Am Chem Soc 137:7448–7455

    CAS  Google Scholar 

  14. Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444

    Google Scholar 

  15. Zhang HB, Nai JW, Yu L, Lou XW (2017) Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1:77–107

    CAS  Google Scholar 

  16. Li BY, Chrzanowski M, Zhang YM, Ma SQ (2016) Applications of metal-organic frameworks featuring multi-functional sites. Coord Chem Rev 307:106–129

    CAS  Google Scholar 

  17. Zhang T, Lin WB (2014) Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43:5982–5993

    CAS  Google Scholar 

  18. Abednatanzi S, Derakhshandeh PG, Depauw H, Coudert FX, Vrielinck H, Voort PVD, Leus K (2019) Mixed-metal metal-organic frameworks. Chem Soc Rev 48:2535–2565

    CAS  Google Scholar 

  19. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H (2019) Mixed-Metal MOFs: Unique Opportunities In Metal-Organic Framework (MOF) functionality and design. Angew Chem Int Ed 58:15188–15250

    CAS  Google Scholar 

  20. Wang R, Xu HJ, Zhang K, Wei SY, Wu DY (2019) High-quality Al@Fe-MOF prepared using Fe-MOF as a micro-reactor to improve adsorption performance for selenite. J Hazard Mater 364:272–280

    CAS  Google Scholar 

  21. Cao J, Yang Z, Xiong W, Zhou Y, Peng Y, Li X, Zhou C, Xu R, Zhang Y (2018) One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem Eng J 353:126–137

    CAS  Google Scholar 

  22. Sheng Y, Wei Z, Miao H, Yao W, Li H, Zhu Y (2019) Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem Eng J 370:287–294

    CAS  Google Scholar 

  23. Ren Y, Li T, Zhang W, Wang S, Shi M, Shan C, Zhang W, Guan X, Lv L, Hua M, Pan B (2019) MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. J Hazard Mater 365:312–321

    CAS  Google Scholar 

  24. Nandasiri MI, Jambovane SR, McGrail BP, Schaef HT, Nune SK (2016) Adsorption, separation, and catalytic properties of densified metal-organic frameworks. Coord Chem Rev 311:38–52

    CAS  Google Scholar 

  25. Li H, Li L, Lin RB, Zhou W, Zhang Z, Xiang S, Chen B (2019) Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem 1:100006

    Google Scholar 

  26. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H (2018) Recent advances in gas storage and separation using metal-organic frameworks. Mater Today 21:108–121

    CAS  Google Scholar 

  27. Das S, Xu S, Ben T, Qiu S (2018) Chiral recognition and separation by chirality-enriched metal-organic frameworks. Angew Chem Int Ed 57:8629–8633

    CAS  Google Scholar 

  28. Hou QQ, Wu Y, Zhou S, Wei Y, Caro J, Wang H (2019) Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew Chem Int Ed 58:327–331

    CAS  Google Scholar 

  29. Ye YX, Ma Z, Lin RB, Krishna R, Zhou W, Lin Q, Zhang Z, Xiang S, Chen B (2019) Pore space partition within a metal-organic framework for highly efficient C2H2/CO2 separation. J Am Chem Soc 141:4130–4136

    CAS  Google Scholar 

  30. Wang S, McGuirk CM, d'Aquino A, Mason JA, Mirkin CA (2018) Metal-Organic Framework Nanoparticles. Adv Mater 30:1800202

    Google Scholar 

  31. Dhakshinamoorthy A, Li Z, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47:8134–8172

    CAS  Google Scholar 

  32. Sun D, Li Z (2017) Robust Ti- and Zr-Based Metal-Organic Frameworks for Photocatalysis. Chin J Chem 35:135–147

    CAS  Google Scholar 

  33. Shen K, Chen XD, Chen JY, Li YW (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal 6:5887–5903

    CAS  Google Scholar 

  34. Zhang ZS, Zhao K, Li XG, Li SL, Li H (2020) The engineering of surface plasmon resonance and up-conversion to improve the photocatalytic performance of MIL-53(Fe) over the full solar spectrum. J Mater Sci 55:997–1011. https://doi.org/10.1007/s10853-019-03995-7

    CAS  Google Scholar 

  35. Mohaghegh N, Kamrani S, Tasviri M, Elahifard M, Gholami M (2015) Nanoporous Ag2O photocatalysts based on copper terephthalate metal–organic frameworks. J Mater Sci 50(13):4536–4546. https://doi.org/10.1007/s10853-015-9003-3

    CAS  Google Scholar 

  36. Chi WS, Roh DK, Lee CS, Kim JH (2015) A shape- and morphology-controlled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells. J Mater Chem A 3:21599–21608

    CAS  Google Scholar 

  37. Basit MA, Rashid M, Khan TF, Muhyuddin M, Butt S (2019) Simplistic thermal transformation of MIL-125 to TiO2 nano-coins and nano-diamonds for efficient quantum-dot sensitized solar cells. Mat Sci Semicon Proc 104:104663

    CAS  Google Scholar 

  38. Wang ZQ, Li X, Xu H, Yang Y, Cui YJ, Pan HG, Wang ZY, Chen BL, Qian GD (2014) J Mater Chem A 2:12571–12575

    CAS  Google Scholar 

  39. Su Y, Li S, He D, Yu D, Liu F, Shao N, Zhang Z (2018) MOF-Derived Porous ZnO Nanocages/rGO/Carbon sponge-based photocatalytic microreactor for efficient degradation of water pollutants and hydrogen evolution. ACS Sustain Chem Eng 6:11989–11998

    CAS  Google Scholar 

  40. Zhang B, Zhang J, Tan X, Shao D, Shi J, Zheng L, Zhang J, Yang G, Han B (2018) MIL-125-NH2@TiO2 core-shell particles produced by a post-solvothermal route for high-performance Photocatalytic H2 production. ACS Appl Mater Interfaces 10:16418–16423

    CAS  Google Scholar 

  41. Zhang F, Zhang B, Feng J, Tan X, Liu L, Liu L, Han B, Zheng L, Zhang J, Tai J, Zhang J (2019) Highly mesoporous Ru-MIL-125-NH2 produced by supercritical fluid for efficient photocatalytic hydrogen production. ACS Appl Energy Mater 2:4964–4970

    CAS  Google Scholar 

  42. Chen YF, Tan LL, Liu JM, Qin S, Xie ZQ, Huang JF, Xu YW, Xiao LM, Su CY (2017) Calix [4] arene based dye-sensitized Pt@UiO-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production. Appl Catal B Environ 206:426–433

    CAS  Google Scholar 

  43. He J, Wang J, Chen Y, Zhang J, Duan D, Wang Y, Yan Z (2014) A dye-sensitized Pt@UiO-66(Zr) metal-organic framework for visible-light photocatalytic hydrogen production. Chem Commun 50:7063–7066

    CAS  Google Scholar 

  44. Zlotea C, Phanon D, Mazaj M, Heurtaux D, Guillerm V, Serre C, Horcajada P, Devic T, Magnier E, Cuevas F, Ferey G, Llewellyn PL, Latroche M (2011) Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Trans 40:4879–4881

    CAS  Google Scholar 

  45. Hu Q, Di J, Wang B, Ji M, Chen Y, Xia J, Li H, Zhao Y (2019) In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity. Appl Surf Sci 466:525–534

    CAS  Google Scholar 

  46. Emam HE, Abdelhameed RM (2017) Anti-UV radiation textiles designed by embracing with Nano-MIL (Ti, In)-metal organic framework. ACS Appl Mater Interfaces 9:28034–28045

    CAS  Google Scholar 

  47. Wang H, Yuan X, Wu Y, Zeng G, Chen X, Leng L, Wu Z, Jiang L, Li H (2015) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction. J Hazard Mater 286:187–194

    CAS  Google Scholar 

  48. Meng XQ, Sun H, Zhu JW, Bi HP, Han QF, Liu XH, Wang X (2016) Graphene-based cobalt sulfide composite hydrogel with enhanced electrochemical properties for supercapacitors. New J Chem 40:2843–2849

    CAS  Google Scholar 

  49. He WH, Ifraemov R, Raslin A, Hod I (2018) Room-temperature electrochemical conversion of metal-organic frameworks into porous amorphous metal sulfides with tailored composition and hydrogen evolution activity. Adv Funct Mater 28:1707244

    Google Scholar 

  50. Ao D, Zhang J, Liu H (2018) Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti). J Photochem Photobiol A 364:524–533

    CAS  Google Scholar 

  51. Qiu B, Zhu Q, Du M, Fan L, Xing M, Zhang J (2017) Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-Scheme photocatalytic water splitting. Angew Chem Int Ed 56:2684–2688

    CAS  Google Scholar 

  52. Wu Z, Yuan X, Wang H, Wu Z, Jiang L, Wang H, Zhang L, Xiao Z, Chen X, Zeng G (2017) Facile synthesis of a novel full-spectrum-responsive Co2.67S4 nanoparticles for UV-, vis- and NIR-driven photocatalysis. Appl Catal B Environ 202:104–111

    CAS  Google Scholar 

  53. Fu J, Zhu B, You W, Jaroniec M, Yu J (2018) A flexible bio-inspired H2-production photocatalyst. Appl Catal B Environ 220:148–160

    Google Scholar 

  54. Sha Z, Chan HS, Wu J (2015) Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. J Hazard Mater 299:132–140

    CAS  Google Scholar 

  55. Wang H, Yuan X, Wu Y, Zeng G, Chen X, Leng L, Li H (2015) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B Environ 174–175:445–454

    Google Scholar 

  56. Wang Q, Wang W, Zhong L, Liu D, Cao X, Cui F (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B Environ 220:290–302

    CAS  Google Scholar 

  57. Yu D, Wu M, Hu Q, Wang L, Lv C, Zhang L (2019) Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: efficiency and mechanism. J Hazard Mater 367:456–464

    CAS  Google Scholar 

  58. Gong Y, Zhao X, Zhang H, Yang B, Xiao K, Guo T, Zhang J, Shao H, Wang Y, Yu G (2018) MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation. Appl Catal B Environ 233:35–45

    CAS  Google Scholar 

  59. He S, Rong Q, Niu H, Cai Y (2019) Platform for molecular-material dual regulation: a direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. Appl Catal B Environ 247:49–56

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Anhui Province (1908085QB75), the Fundamental Research Funds for the Central Universities (WK2060190053), National Natural Science Foundation of China (21571167, 21675158, 21976002 and 61603001) and Anhui Provincial Natural Science Foundation for Distinguished Young Scholars (2008085J11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Liu, Hexin Zhang or Kui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zou, Q., Ma, Y. et al. A novel amorphous CoSx/NH2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light. J Mater Sci 55, 16171–16183 (2020). https://doi.org/10.1007/s10853-020-05210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05210-4

Navigation