Skip to main content

Advertisement

Log in

Enhanced photocathodic antifouling/antibacterial properties of polyaniline–Ag–N-doped TiO2 coatings

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently, there is tremendous interest in the development of surface coatings for outdoor applications that are self-cleaning with strong antibacterial properties. Herein, aniline was polymerized in situ with silver–N-doped TiO2 composites to fabricate PANI–Ag–N–TiO2 nanocomposites, which were then mixed with an acrylic resin to form coatings on type 316L stainless steel. Under UV–Vis light illumination, the PANI–Ag–N–TiO2 coatings delivered a stable photocathodic potential of − 0.79 V, a much larger negative potential than was realized using PANI–N–TiO2 (− 0.55 V) or PANI–TiO2 (− 0.40 V) coatings. The addition of Ag nanoparticles thus greatly enhanced the photo-cathodic response. Antimicrobial experiments demonstrated that the PANI–Ag–N–TiO2 coating offers good antibacterial activity (> 95% inhibition) against E. coli under UV–Vis light irradiation for 30 min, due to the generation of hydrogen peroxide or other reactive oxygen species capable of damaging the membrane of E. coli cells. Results suggest that PANI–Ag–N–TiO2 composite coatings offer good antifouling performance in marine environments.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Scheme 1
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390. https://doi.org/10.1021/cr200350v

    Article  CAS  Google Scholar 

  2. Abioye OP, Loto CA, Fayomi OSI (2019) Evaluation of anti-biofouling progresses in marine application. J Bio- Tribo-Corros. https://doi.org/10.1007/s40735-018-0213-5

    Article  Google Scholar 

  3. Ali A, Jamil MI, Jiang J, Shoaib M, Amin BU, Luo S, Zhan X, Chen F, Zhang Q (2020) An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications. J Polym Res. https://doi.org/10.1007/s10965-020-02054-z

    Article  Google Scholar 

  4. Cao S, Wang J, Chen H, Chen D (2010) Progress of marine biofouling and antifouling technologies. Chin Sci Bull 56(7):598–612. https://doi.org/10.1007/s11434-010-4158-4

    Article  CAS  Google Scholar 

  5. Li Z, Guo Z (2019) Bioinspired surfaces with wettability for antifouling application. Nanoscale 11(47):22636–22663. https://doi.org/10.1039/c9nr05870b

    Article  CAS  Google Scholar 

  6. Yang WJ, Neoh K-G, Kang E-T, Teo SL-M, Rittschof D (2014) Polymer brush coatings for combating marine biofouling. Prog Polym Sci 39(5):1017–1042. https://doi.org/10.1016/j.progpolymsci.2014.02.002

    Article  CAS  Google Scholar 

  7. Saud PS, Pant B, Alam A-M, Ghouri ZK, Park M, Kim H-Y (2015) Carbon quantum dots anchored TiO2 nanofibers: effective photocatalyst for waste water treatment. Ceram Int 41(9):11953–11959

    CAS  Google Scholar 

  8. Friedler E, Gilboa Y (2010) Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing. Sci Total Environ 408(9):2109–2117

    CAS  Google Scholar 

  9. Hejazi S, Nguyen NT, Mazare A, Schmuki P (2017) Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode. Catal Today 281:189–197

    CAS  Google Scholar 

  10. Fu N, Li X, Liu Y, Liu Y, Guo M, Li W, Huang H (2017) Low temperature transfer of well-tailored TiO2 nanotube array membrane for efficient plastic dye-sensitized solar cells. J Power Sources 343:47–53

    CAS  Google Scholar 

  11. Cyganiuk A, Klimkiewicz R, Bumajdad A, Ilnicka A, Lukaszewicz JP (2015) Nanostructured composite TiO2/carbon catalysts of high activity for dehydration of n-butanol. Mater Sci Eng B 198:35–42

    CAS  Google Scholar 

  12. Ratova M, Mills A (2015) Antibacterial titania-based photocatalytic extruded plastic films. J Photochem Photobiol A 299:159–165

    CAS  Google Scholar 

  13. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868

    CAS  Google Scholar 

  14. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114(19):9987–10043

    CAS  Google Scholar 

  15. Zimbone M, Buccheri M, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi M (2015) Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl Catal B 165:487–494

    CAS  Google Scholar 

  16. Nandagopal S, Augustine R, George SC, Jayachandran V, Kalarikkal N, Thomas S (2016) Gentamicin loaded electrospun poly (ε-Caprolactone)/TiO2/nanocomposite membranes with antibacterial property against methicillin resistant staphylococcus aureus. Polym Plast Technol Eng 55(17):1785–1796

    Google Scholar 

  17. Liu W, Liu H, Ai Z (2015) In-situ generated H2O2 induced efficient visible light photo-electrochemical catalytic oxidation of PCP-Na with TiO2. J Hazard Mater 288:97–103

    CAS  Google Scholar 

  18. Thakur P, Tan B, Venkatakrishnan K (2015) Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region. Sci Rep 5:15354. https://doi.org/10.1038/srep15354

    Article  CAS  Google Scholar 

  19. Gates DM (1966) Spectral distribution of solar radiation at the earth's surface. Science 151:523–529

    CAS  Google Scholar 

  20. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129(15):4538–4539

    CAS  Google Scholar 

  21. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126(15):4943–4950

    CAS  Google Scholar 

  22. Khan M, Jiang P, Li J, Cao W (2014) Enhanced photoelectrochemical properties of TiO2 by codoping with tungsten and silver. J Appl Phys 115(15):153103

    Google Scholar 

  23. Yan J, Zhang Y, Liu S, Wu G, Li L, Guan N (2015) Facile synthesis of an iron doped rutile TiO2 photocatalyst for enhanced visible-light-driven water oxidation. J Mater Chem A 3(43):21434–21438

    CAS  Google Scholar 

  24. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40(4):3000–3009

    CAS  Google Scholar 

  25. Sun Q, Zhang J, Wang P, Zheng J, Zhang X, Cui Y, Feng J, Zhu Y (2012) Sulfur-doped TiO2 nanocrystalline photoanodes for dye-sensitized solar cells. J Renew Sustain Energy 4(2):023104

    Google Scholar 

  26. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    CAS  Google Scholar 

  27. Karácsonyi É, Baia L, Dombi A, Danciu V, Mogyorósi K, Pop L, Kovács G, Coşoveanu V, Vulpoi A, Simon S (2013) The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catal Today 208:19–27

    Google Scholar 

  28. Ronca E, Pastore M, Belpassi L, Tarantelli F, De Angelis F (2013) Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects. Energy Environ Sci 6(1):183–193

    CAS  Google Scholar 

  29. Zhang J, Yang H, Xu S, Yang L, Song Y, Jiang L, Dan Y (2015) Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3HT. Appl Catal B 174:193–202

    Google Scholar 

  30. Rawal SB, Bera S, Lee D, Jang D-J, Lee WI (2013) Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal Sci Technol 3(7):1822–1830

    CAS  Google Scholar 

  31. Zuo F, Angelopoulos M, MacDiarmid AG, Epstein AJ (1987) Transport studies of protonated emeraldine polymer: a granular polymeric metal system. Phys Rev B 36(6):3475–3478

    CAS  Google Scholar 

  32. Park YR, Kim HJ, Im S, Seo S, Shin K, Choi WK, Hong YJ (2016) Tailoring the highest occupied molecular orbital level of poly (N-vinylcarbazole) hole transport layers in organic multilayer heterojunctions. Appl Phys Lett 108(2):023301

    Google Scholar 

  33. Tanguy NR, Arjmand M, Yan N (2019) Nanocomposite of nitrogen-doped graphene/polyaniline for enhanced ammonia gas detection. Adv Mater Interfaces. https://doi.org/10.1002/admi.201900552

    Article  Google Scholar 

  34. Çolak N, Sökmen B (2012) Doping of chemically synthesized polyaniline. Des Monomers Polym 3(2):181–189. https://doi.org/10.1163/156855500300142870

    Article  Google Scholar 

  35. Li J, Tang X, Li H, Yan Y, Zhang Q (2010) Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth Metals 160(11–12):1153–1158. https://doi.org/10.1016/j.synthmet.2010.03.001

    Article  CAS  Google Scholar 

  36. Geethalakshmi D, Muthukumarasamy N, Balasundaraprabhu R (2014) Effect of dopant concentration on the properties of HCl-doped PANI thin films prepared at different temperatures. Optik 125(3):1307–1310. https://doi.org/10.1016/j.ijleo.2013.08.014

    Article  CAS  Google Scholar 

  37. Nowotny J, Bak T, Nowotny M, Sheppard L (2007) Titanium dioxide for solar-hydrogen II. Defect chemistry. Int J Hydrog Energy 32(14):2630–2643. https://doi.org/10.1016/j.ijhydene.2006.09.005

    Article  CAS  Google Scholar 

  38. Anitha VC, Banerjee AN, Joo SW (2015) Recent developments in TiO2 as n-and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J Mater Sci 50(23):7495–7536. https://doi.org/10.1007/s10853-015-9303-7

    Article  CAS  Google Scholar 

  39. Li C, Yang W, Li Q (2018) TiO2-based photocatalysts prepared by oxidation of TiN nanoparticles and their photocatalytic activities under visible light illumination. J Mater Sci Technol 34(6):969–975

    Google Scholar 

  40. Nakamura R, Tanaka T, Nakato Y (2004) Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J Phys Chem B 108(30):10617–10620

    CAS  Google Scholar 

  41. Wang P, Huang B, Dai Y, Whangbo M-H (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14(28):9813–9825

    CAS  Google Scholar 

  42. Santos LM, Machado WA, França MD, Borges KA, Paniago RM, Patrocinio AO, Machado AE (2015) Structural characterization of Ag-doped TiO2 with enhanced photocatalytic activity. RSC Adv 5(125):103752–103759

    CAS  Google Scholar 

  43. Albert E, Albouy P-A, Ayral A, Basa P, Csík G, Nagy N, Roualdes S, Rouessac V, Safran G, Suhajda A (2015) Antibacterial properties of Ag–TiO2 composite sol-gel coatings. RSC Adv 5(73):59070–59081

    CAS  Google Scholar 

  44. Augustine R, Kalarikkal N, Thomas S (2016) Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Appl Nanosci 6(3):337–344

    CAS  Google Scholar 

  45. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6):746–750

    CAS  Google Scholar 

  46. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327. https://doi.org/10.2147/IJN.S165125

    Article  CAS  Google Scholar 

  47. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. https://doi.org/10.1088/0957-4484/18/22/225103

    Article  Google Scholar 

  48. Wen B, Waterhouse GI, Jia M-Y, Jiang X-h, Zhang Z-M, Yu L-m (2019) The feasibility of polyaniline–TiO2 coatings for photocathodic antifouling: antibacterial effect. Synth Metals 257:116175

    Google Scholar 

  49. Zhang W, Liu Y, Zhou D, Wen J, Liang W, Yang F (2015) Photocatalytic activity of Ag nanoparticle-dispersed N–TiO2 nanofilms prepared by magnetron sputtering. RSC Adv 5(70):57155–57163

    CAS  Google Scholar 

  50. Trung TN, Kim D-O, Kim E-T (2017) Direct and self-selective synthesis of Ag nanowires on patterned graphene. RSC Adv 7(28):17325–17331. https://doi.org/10.1039/c6ra28389f

    Article  CAS  Google Scholar 

  51. Feng J, Fan D, Wang Q, Ma L, Wei W, Xie J, Zhu J (2017) Facile synthesis silver nanoparticles on different xerogel supports as highly efficient catalysts for the reduction of p-nitrophenol. Colloids Surf A 520:743–756. https://doi.org/10.1016/j.colsurfa.2017.02.041

    Article  CAS  Google Scholar 

  52. Rakibuddin M, Ananthakrishnan R (2016) A novel Ag deposited nanocoordination polymer derived porous SnO2/NiO heteronanostructure for the enhanced photocatalytic reduction of Cr(vi) under visible light. New J Chem 40(4):3385–3394. https://doi.org/10.1039/c5nj02755a

    Article  CAS  Google Scholar 

  53. Lu J, Su F, Huang Z, Zhang C, Liu Y, Ma X, Gong J (2013) N-doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Adv 3(3):720–724. https://doi.org/10.1039/c2ra22713d

    Article  CAS  Google Scholar 

  54. Olad A, Nosrati R, Najjari H, Nofouzi K (2016) Preparation and investigation of hydrophilic, photocatalytic, and antibacterial polyacrylic latex coating containing nanostructured TiO2/Ag+-exchanged-montmorillonite composite material. Appl Clay Sci 123:156–165

    CAS  Google Scholar 

  55. Srivastava D, Dwivedi N, Shukla R (2019) Effect of high frequency on dielectric properties of PAni/GO composite in different relative humidity environment. Mater Today Proc 12:596–604

    CAS  Google Scholar 

  56. Meng X, Zhang Z (2016) Plasmonic ternary Ag–rGO–Bi2MoO6 composites with enhanced visible light-driven photocatalytic activity. J Catal 344:616–630

    CAS  Google Scholar 

  57. Bledowski M, Wang L, Ramakrishnan A, Khavryuchenko OV, Khavryuchenko VD, Ricci PC, Strunk J, Cremer T, Kolbeck C, Beranek R (2011) Visible-light photocurrent response of TiO2–polyheptazine hybrids: evidence for interfacial charge-transfer absorption. Phys Chem Chem Phys 13(48):21511–21519

    CAS  Google Scholar 

  58. Zengin H, Zhou W, Jin J, Czerw R, Smith D Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14(20):1480–1483

    CAS  Google Scholar 

  59. Monfared AH, Jamshidi M (2019) Effects of photocatalytic activity of nano TiO2 and PAni/TiO2 nanocomposite on the physical/mechanical performances of acrylic pseudo paints. Prog Org Coat 136:105300

    CAS  Google Scholar 

  60. Wang D, Wang Y, Li X, Luo Q, An J, Yue J (2008) Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method. Catal Commun 9(6):1162–1166

    CAS  Google Scholar 

  61. Shen C, Wang Y, Xu J, Luo G (2012) Facile synthesis and photocatalytic properties of TiO2 nanoparticles supported on porous glass beads. Chem Eng J 209:478–485

    CAS  Google Scholar 

  62. Ismail AA (2012) Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties. Microporous Mesoporous Mater 149(1):69–75. https://doi.org/10.1016/j.micromeso.2011.08.030

    Article  CAS  Google Scholar 

  63. Raveendran L, Veerapandy V, Mohan B, Balakrishnan K, Selvarajan P (2019) Effect of morphology on the photocatalytic property of PANI/TiO2 on some synthetic dyes. Mater Res Express. https://doi.org/10.1088/2053-1591/ab559e

    Article  Google Scholar 

  64. Jiang J, Xing Z, Li M, Li Z, Yin J, Kuang J, Zou J, Zhu Q, Zhou W (2018) Plasmon Ag decorated 3D urchinlike N–TiO2x for enhanced visible-light-driven photocatalytic performance. J Colloid Interface Sci 521:102–110

    CAS  Google Scholar 

  65. Wu J, Wang Y, Zhang D, Hou B (2011) Studies on the electrochemical reduction of oxygen catalyzed by reduced graphene sheets in neutral media. J Power Sources 196(3):1141–1144

    CAS  Google Scholar 

  66. Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N–TiO2 rice grain shaped electrospun nanostructures. Int J Hydrog Energy 37(10):8897–8904. https://doi.org/10.1016/j.ijhydene.2011.12.015

    Article  CAS  Google Scholar 

  67. Fang J, Wang F, Qian K, Bao H, Jiang Z, Huang W (2008) Bifunctional N-doped mesoporous TiO2 photocatalysts. J Phys Chem C 112(46):18150–18156

    CAS  Google Scholar 

  68. Nosrati R, Olad A, Shakoori S (2017) Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide. Mater Sci Eng C Mater Biol Appl 80:642–651. https://doi.org/10.1016/j.msec.2017.07.004

    Article  CAS  Google Scholar 

  69. Kuang F, Zhang D, Li Y, Wan Y, Hou B (2009) Electrochemical impedance spectroscopy analysis for oxygen reduction reaction in 3.5% NaCl solution. J Solid State Electrochem 13(3):385–390

    CAS  Google Scholar 

  70. Bocca C, Barbucci A, Cerisola G (1998) The influence of surface finishing on the electrocatalytic properties of nickel for the oxygen evolution reaction (OER) in alkaline solution. Int J Hydrog Energy 23(4):247–252

    CAS  Google Scholar 

  71. Liu Y, Quan X, Fan X, Wang H, Chen S (2015) High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew Chem Int Ed Engl 54(23):6837–6841. https://doi.org/10.1002/anie.201502396

    Article  CAS  Google Scholar 

  72. Jiang K, Back S, Akey AJ, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Norskov JK, Siahrostami S, Wang H (2019) Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun 10(1):3997. https://doi.org/10.1038/s41467-019-11992-2

    Article  CAS  Google Scholar 

  73. Jia M-Y, Zhang Z-M, Yu L-M, Wang J (2017) PANI-PMMA as cathodic electrode material and its application in cathodic polarization antifouling. Electrochem Commun 84:57–60

    CAS  Google Scholar 

  74. Jia M-y, Zhang J-y, Zhang Z-m, Yu L-m, Wang J (2018) The application of Ag@PPy composite coating in the cathodic polarization antifouling. Mater Lett 230:283–288. https://doi.org/10.1016/j.matlet.2018.07.087

    Article  CAS  Google Scholar 

  75. Xiao FX, Hung SF, Tao HB, Miao J, Yang HB, Liu B (2014) Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D–1D hybrid nanostructures. Nanoscale 6(24):14950–14961. https://doi.org/10.1039/c4nr04886e

    Article  CAS  Google Scholar 

  76. Wang Y, Shi R, Lin J, Zhu Y (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci. https://doi.org/10.1039/c0ee00825g

    Article  Google Scholar 

  77. Alvi F, Ram MK, Gomez H, Joshi RK, Kumar A (2010) Evaluating the chemio-physio properties of novel zinc oxide–polyaniline nanocomposite polymer films. Polym J 42(12):935–940. https://doi.org/10.1038/pj.2010.89

    Article  CAS  Google Scholar 

  78. Wang Y, Xiong S, Wang X, Chu J, Zhang R, Wu B, Gong M, Qu M, Li Z, Chen Z (2020) Water-dispersible polyaniline–carbon nanotubes composites with interface covalent bond and their enhanced electrochemical and electrochromic properties. Polym Eng Sci. https://doi.org/10.1002/pen.25463

    Article  Google Scholar 

  79. Xu C, Chen P, Liu J, Yin H, Gao X, Mei X (2016) Fabrication of visible-light-driven Ag/TiO2 heterojunction composites induced by shock wave. J Alloys Compd 679:463–469. https://doi.org/10.1016/j.jallcom.2016.04.048

    Article  CAS  Google Scholar 

  80. Wyrwoll AJ, Lautenschläger P, Bach A, Hellack B, Dybowska A, Kuhlbusch TA, Hollert H, Schäffer A, Maes HM (2016) Size matters—the phototoxicity of TiO2 nanomaterials. Environ Pollut 208:859–867

    CAS  Google Scholar 

  81. Wan Y, Zhang D, Wang Y, Qi P, Wu J, Hou B (2011) Vancomycin-functionalised Ag@TiO2 phototoxicity for bacteria. J Hazard Mater 186(1):306–312

    CAS  Google Scholar 

  82. Ton NQT, Le TNT, Kim S, Dao VA, Yi J, Vu THT (2020) High-efficiency photo-generated charges of ZnO/TiO2 heterojunction thin films for photocatalytic and antibacterial performance. J Nanosci Nanotechnol 20(4):2214–2222

    CAS  Google Scholar 

  83. Ohsaka T, Mao L, Arihara K, Sotomura T (2004) Bifunctional catalytic activity of manganese oxide toward O2 reduction: novel insight into the mechanism of alkaline air electrode. Electrochem Commun 6(3):273–277

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Key Research and Development Project (2019YFC0312102), NSFC-Shandong Joint Fund (U1706225). GINW acknowledges funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnology and the Dodd Walls Centre for Photonic and Quantum Technologies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ming Zhang or Liang-min Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shiben Liu and Bo Wen have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wen, B., Jiang, X. et al. Enhanced photocathodic antifouling/antibacterial properties of polyaniline–Ag–N-doped TiO2 coatings. J Mater Sci 55, 16255–16272 (2020). https://doi.org/10.1007/s10853-020-05170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05170-9

Navigation