Skip to main content

Advertisement

Log in

Study on Low-Temperature Sintering Behavior of 90W-7Ni-3Fe Alloys: The Influence of Sn Addition

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, we investigate low-temperature sintering behavior of the 90W-7Ni-3Fe alloy by introducing Sn. The 90W-7Ni-3Fe alloy with different Sn contents (0, 0.5, 1.0 and 1.5 wt.%) was fabricated via vacuum sintering at 1300 °C for 90 min. When 1 wt.% Sn was added, the liquidus temperature of the 90W-7Ni-3Fe alloy decreased from 1477 to 1265 °C, resulting in rapid densification (relative density increased from 77.77 to 98.59%) and an homogeneous liquid-phase sintered microstructure. Electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) observations revealed that, apart from W and the γ-(Ni, Fe) phase, a new Ni3Sn2 phase appeared in the matrix phase. Furthermore, we discuss in detail the formation of the Ni3Sn2 phase based on element selection theory, which can be associated with the larger atomic radius of Sn and with the negative enthalpy of mixing Sn and Ni. Excessive Sn content (1.5 wt.%) led to the increase in Ni3Sn2 phase, and this deteriorated the relative density and tensile strength of the alloy. The 90W-7Ni-3Fe alloy with the addition of 1 wt.% Sn exhibited a maximum tensile strength value (710 MPa), which was much higher than that of the 90W-7Ni-3Fe alloy that was obtained at 1300 °C. Our findings shed light on further research directions and developed a 90W-6.3Ni-2.1Fe-1Sn alloy for low-temperature sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. R.M. German, P. Suri, and S.J. Park, Review: Liquid Phase Sintering, J. Mater. Sci., 2009, 44, p 1–39

    Article  CAS  Google Scholar 

  2. S.H. Islam, F. Akhtar, S.J. Askari et al., Tensile Behavior Change Depending on the Varying Tungsten Content of W-Ni–Fe Alloys, Int. J. Refract. Met. Hard Mater., 2007, 25, p 380–385

    Article  Google Scholar 

  3. U.R. Kiran, A. Panchal, M. Sankaranarayana et al., Effect of Alloying Addition and Microstructural Parameters on Mechanical Properties of 93% Tungsten Heavy Alloys Mater, Sci. Eng. A, 2015, 640, p 82–90

    Article  Google Scholar 

  4. A. Upadhyaya, S.K. Tiwari, and P. Mishra, Microwave Sintering of W-Ni-Fe Alloy, Scr. Mater., 2007, 56, p 5–8

    Article  CAS  Google Scholar 

  5. H. Liu, S. Cao, J. Zhu et al., Densification, Microstructure and Mechanical Properties of 90W–4Ni–6Mn Heavy Alloy, Int. J. Refract. Met. Hard Mater., 2013, 37, p 121–126

    Article  Google Scholar 

  6. B. Chen, S. Cao, H. Xu et al., Effect of Processing Parameters on Microstructure and Mechanical Properties of 90W–6Ni–4Mn Heavy Alloy, Int. J. Refract. Met. Hard Mater., 2015, 48, p 293–300

    Article  CAS  Google Scholar 

  7. R.M. German, Lower Sintering Temperature Tungsten Alloys for Space Research, Int. J. Refract. Met. Hard Mater., 2015, 53, p 74–79

    Article  CAS  Google Scholar 

  8. W.Q. Hu, Z. Dong, L.M. Yu et al., Synthesis of W-Y2O3 Alloys by Freeze-Drying and Subsequent Low Temperature Sintering: Microstructure Refinement and Second Phase Particles Regulation, J. Mater. Sci. Technol., 2020, 36, p 84–90

    Article  Google Scholar 

  9. A. Mondal, A. Upadhyaya, and D. Agrawal, Effect of Heating Mode and Sintering Temperature on the Consolidation of 90W–7Ni–3Fe Alloys, J. Alloys Compd., 2011, 509, p 301–310

    Article  CAS  Google Scholar 

  10. V.I. Nizhenko and V.V. Skorokhod, Compaction Kinetics with Liquid-Phase Sintering of W-Ni-Sn Pseudoalloys, Powder Metall. Met. Ceram., 2004, 43, p 364–370

    Article  CAS  Google Scholar 

  11. V.I. Nizhenko, V.Y. Petrishchev, and V.V. Skorokhod, Effect of Liquid Phase on W-Ni-Sn and W-Co-Sn Pseudoalloys in Liquid–Phase Sintering, Powder Metall. Met. Ceram., 2007, 46, p 105–110

    Article  CAS  Google Scholar 

  12. W. Zhu, W. Liu, Q. Cai et al., The Study on Low Temperature Sintering of a W-Ni-Cu-Sn Heavy Alloy, Mater. Res. Express, 2018, 6, p 016535

    Article  Google Scholar 

  13. Y. Pan, X. Lu, C. Liu et al., Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys, Acta Metall. Sin., 2018, 54, p 93–99

    CAS  Google Scholar 

  14. Q.M. Xu, N. Li, W.B. Liu et al., Effects of Sn–Substitution on the Microstructure and Magnetic Properties of Bi–CVG Ferrite with Low Temperature Sintering, J. Alloys Compd., 2011, 322, p 2276–2280

    Google Scholar 

  15. Z. Ma, H. Jiang, and Y. Liu, The Acceleration of Low-Temperature Sintering of MgB2 Bulks with High Critical Density by Minor Sn doping, Supercond. Sci. Technol., 2010, 23, p 025005

    Article  Google Scholar 

  16. S. Zhao, X. Han, H. Liu et al., Study on the Low-Temperature Instantaneous Liquid-Phase Sintering Method for Terfenol–D with Addition of Sn, Rare Met. Mater. Eng., 2007, 36, p 750–752

    CAS  Google Scholar 

  17. G. Prabhu, N. Arvind Kumar, M. Sankaranarayana et al., Tensile and Impact Properties of Microwave Sintered Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2014, 607, p 63–70

    Article  CAS  Google Scholar 

  18. H. Ke, X. Li, Y. Chao et al., Densification and Microstructure Evolution During SPS Consolidation Process in W-Ni-Fe System, Trans. Nonferr. Met. Soc. China, 2011, 21, p 493–501

    Article  Google Scholar 

  19. P. Schafmeister and R. Ergang, Das Zustandsschaubild Eisen–Nickel–Zinn, Archiv für das Eisenhüttenwesen German, 1939, 13, p 95–103

    Article  CAS  Google Scholar 

  20. German R M. Liquid phase sintering. Plenum Press, 1985. Allen, B. C. Solubility of Chromium in Liquid Silver and Molybdenum and Tungsten in Liquid Tin. Battelle Memorial Inst., Columbus, Ohio, 1967.

  21. B.C. Allen, Solubility of Chromium in Liquid Silver and Molybdenum and Tungsten in Liquid Tin, Battelle Memorial Inst, Columbus, 1967

    Google Scholar 

  22. L. Liu, L.J. He, B. Qi et al., Effects of Sn Element on Microstructure and Properties of SnxAl2.5FeCoNiCu Multi–Component Alloys, J. Alloys Compd., 2016, 654, p 327–332

    Article  CAS  Google Scholar 

  23. Z. Wang, Y. Huang, Y. Yang et al., Atomic–Size Effect and Solid Solubility of Multicomponent Alloys, Scr. Mater., 2015, 94, p 28–31

    Article  CAS  Google Scholar 

  24. C. Li, M. Zhao, J.C. Li et al., B 2 Structure of High-Entropy Alloys with Addition of Al, J. Appl. Phys., 2008, 104, p 113504

    Article  Google Scholar 

  25. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46, p 2817–2829

    Article  CAS  Google Scholar 

  26. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci., 2011, 21, p 433–446

    Article  Google Scholar 

  27. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys., 2012, 132, p 233–238

    Article  CAS  Google Scholar 

  28. A.A. Nayeb-Hashmi and J.B. Clark, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, 1991

    Google Scholar 

  29. T.T. Huang, S.W. Lin, C.M. Chen et al., Phase Equilibria of the Fe-Ni-Sn Ternary System at 270 °C, J. Electron. Mater., 2016, 45, p 6208–6213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51701242, 51801236, 51931012) and the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Liu, Qingshan Cai or Yufeng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Ma, Y., Liu, W. et al. Study on Low-Temperature Sintering Behavior of 90W-7Ni-3Fe Alloys: The Influence of Sn Addition. J. of Materi Eng and Perform 29, 5894–5901 (2020). https://doi.org/10.1007/s11665-020-05055-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05055-7

Keywords

Navigation