Skip to main content
Log in

Critical Behavior and Its Correlation with Magneto-Electrical Properties in La0.47Ln0.2Pb0.33MnO3 (Ln = Y and Eu) Polycrystalline

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The relationship between electrical and magnetic properties of manganites has been traced through the analysis of dependence of La0.47Eu0.2Pb0.33MnO3 (LEPMO) and La0.47Y0.2Pb0.33MnO3 (LYPMO) resistivity on temperature. The dependence of electrical resistivity on temperature shows a metal–semiconductor transition at TM-Sc and a decrease in TM-sc with Eu and Y substitution. The critical property of both systems around second order transition was investigated using Fisher–Langer relation and Suezaki–Mori method. The obtained exponents values from resistivity were so close to those predicted by the 3D-Ising model. These results and the analysis of the critical exponents from magnetization measurements were in good agreement. For low temperatures (T < TM-Sc), the electrical conduction process obeys the Scattering model defined by \(\rho (T) = \rho_{0} + \rho_{2} T^{2} + \rho_{5} T^{5}\). While for T > TM-Sc, for the two samples, the mechanism of electrical conduction is governed by the thermal activation model defined by \(\rho = \rho_{0} T\exp (E_{\text{a}} /k_{\text{B}} T)\). In order to understand the transport mechanism in the whole temperature range, the phenomenological percolation model, based on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions, was used in fitting the electrical resistivity. Therefore, it was found that the estimated values of the resistivity are in good agreement with experimental data. Magnetoresistance study showed a peak that has a great value around the transition temperature (TM-Sc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)

    ADS  Google Scholar 

  2. D.H. Hanh, P.T. Phong, T.D. Thanh, L.V. Hong, N.X. Phuc, J. Alloys Compd. 618, 488–496 (2015)

    Google Scholar 

  3. M.-H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    ADS  Google Scholar 

  4. M. Phejar, V. Paul-Boncour, L. Bessais, J. Solid State Chem. 233, 95 (2016)

    ADS  Google Scholar 

  5. R. Tlili, A. Omri, M. Bejar, E. Dhahri, E.K. Hlil, Ceram. Int. 41, 10654 (2015)

    Google Scholar 

  6. K. Raju, N. Pavan Kumar, P. Venugopal Reddy, D.H. Yoon, Phys. Lett. A 379, 1178 (2015)

    ADS  Google Scholar 

  7. E.S. Miyamaru Seo et al., Mater. Sci. 416, 354–358 (2003)

    Google Scholar 

  8. N.D. Thorat et al., Dalton Trans. 41, 3060–3071 (2012)

    Google Scholar 

  9. X. Yunhui et al., Sens. Actuators, A 91, 26–29 (2001)

    Google Scholar 

  10. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)

    ADS  Google Scholar 

  11. K. Khazeni, Y.X. Jia, L. Lu, V.H. Crespi, M.L. Cohen, A. Zettl, Phys. Rev. Lett. 76, 295 (1996)

    ADS  Google Scholar 

  12. A. Urushibara, Y. Moritomo, T. Arima, G. Kito, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    ADS  Google Scholar 

  13. C. Zener, Phys. Rev. 81, 440 (1951)

    ADS  Google Scholar 

  14. L. Sheng, D.Y. Xing, D.N. Sheng, C.S. Ting, Phys. Rev. B 56, R7053 (1997)

    ADS  Google Scholar 

  15. A.S. Alexandrov, A.M. Bratkovsky, V.V. Kabanov, Phys. Rev. Lett. 96, 117003 (2006)

    ADS  Google Scholar 

  16. L.M. Wang, C.-Y. Wang, C.-C. Tseng, Appl. Phys. Lett. 100, 232403 (2012)

    ADS  Google Scholar 

  17. P.T. Phong, D.H. Manh, L.V. Bau, I.-J. Lee, J. Electroceram. 31, 364 (2013)

    Google Scholar 

  18. A. Banerjee, A.V. Narlikar, D. Prabhakaran, A.T. Boothroyd, Phys. Rev. B 68, 132404 (2003)

    ADS  Google Scholar 

  19. B. Padmanabhan, H.L. Bhat, S. Elizabeth, S. Rößler, U.K. Rößler, K. Dörr, K.H. Müller, Phys. Rev. B 75, 024419 (2007)

    ADS  Google Scholar 

  20. S. Mnefgui, N. Zaidi, A. Dhahri, E.K. Hlil, J. Dhahri, J. Solid State Chem. 215, 193 (2014)

    ADS  Google Scholar 

  21. O. Kallback, S.G. Humble, G. Malmstrom, Phy. Rev. B. 24, 5214 (1981)

    ADS  Google Scholar 

  22. P.P. Craig, W.I. Goldburg, T.A. Kitchens, J.I. Budnick, Phys. Rev. Lett. 19, 1334 (1967)

    ADS  Google Scholar 

  23. A.B. Hassine, S. Hcini, A. Dhahri, M.L. Bouazizi, E.K. Hlil, M. Oumezzine, J. Mol. Struct. 1142, 102–109 (2017)

    ADS  Google Scholar 

  24. A.B. Hassine, A. Dhahri, M.-L. Bouazizi, M. Oumezzine, E.K. Hlil, Ceram. Int. 43, 1390–1393 (2017)

    Google Scholar 

  25. M.E. Fisher, J.S. Langer, Resistive anomalies at magnetic critical points. Phys. Rev. Lett. 20, 665 (1968)

    ADS  Google Scholar 

  26. Y. Suezaki, Y. Mori, Dynamic critical phenomena in magnetic systems. II electrical resistivity near the Néel point. Prog. Theor. Phys. 41, 1177 (1969)

    ADS  Google Scholar 

  27. C.N.R. Rao, B. Raveau, Colossal Magnetoresistance, Charge Order-ing and Related Properties of Manganganese Oxides (World Scientific, Singapore, 1998)

    Google Scholar 

  28. N. Jiang, Y. Jiang, Q. Lu, S. Zhao, J Alloys Compd. 805, 50–56 (2019)

    Google Scholar 

  29. H.E. Sekrafi, A. Ben Jazia Kharrat, N. Chniba-Boudjada, W. Boujelben, J. Alloys Compd. 790, 27–35 (2019)

    Google Scholar 

  30. G.H. Jonker, J.H. van Santen, Physica 16, 331 (1950)

    ADS  Google Scholar 

  31. N. Chau, H.N. Nhat, N.H. Luong, D. LeMinh, N.D. Tho, N.N. Chau, Phys. B Condens. Matter 327, 270–278 (2003)

    ADS  Google Scholar 

  32. E. Burzo, I. Balasz, M. Isobe, Y. Ueda, J. Alloys Compd. 535, 129–137 (2012)

    Google Scholar 

  33. P.T. Phong, L.H. Nguyen, D.H. Manh, N.X. Phuc, I.-J. Lee, Phys. B 425, 6 (2013)

    ADS  Google Scholar 

  34. D. Varshney, I. Mansuri, M.W. Shaikh, Y.K. Kuo, Mater. Res. Bull. 48, 4606–4613 (2013)

    Google Scholar 

  35. G.F. Wang, L.R. Li, Z.R. Zhao, X.Q. Yu, X.F. Zhang, Ceram. Int. 40, 16449–16454 (2014)

    Google Scholar 

  36. D.J.W. Geldart, T.G. Richard, Phys. Rev. B 12, 5175 (1975)

    ADS  Google Scholar 

  37. I. Herbu, A Modern Approach to Critical Phenomena (Cambridge University Press Science, Cambridge, 2007)

    Google Scholar 

  38. G. Li, H.D. Zhou, S.L. Feng, X.-J. Fan, X.G. Li, J. Appl. Phys. 92, 1406 (2002)

    ADS  Google Scholar 

  39. G.J. Snyder, R. Hiskers, S. DiCarolis, M.R. Beasley, T.H. Geballe, Phys. Rev. B 53, 14434 (1996)

    ADS  Google Scholar 

  40. G. Venkataiah, P. Venugopal Reddy, J. Solid State Commun. 136, 114 (2005)

    ADS  Google Scholar 

  41. P.T. Phong, N.V. Khiem, N.V. Dai, D.H. Manh, L.V. Hong, N.X. Phuc, J. Magn. Magn. Mater. 321, 3330 (2009)

    ADS  Google Scholar 

  42. M. Abassia, N. Dhahri, J. Dhahri, E.K. Hlil, Chem. Phys. 40, 436 (2014)

    Google Scholar 

  43. N. Zaidi, S. Mnefgui, A. Dhahri, J. Dhahri, E.K. Hlil, J. Alloys Compd. 616, 378 (2014)

    Google Scholar 

  44. C.M. Xiong, J.R. Sun, Y.F. Chen, B.G. Shen, J. Du, Y.X. Li, J. IEEE Trans. Magn. 41, 122 (2005)

    ADS  Google Scholar 

  45. M. Khlifi, M. Bejar, E. Dhahri, P. Lachkar, E.K. Hlil, J. Appl. Phys. 111, 103909 (2012)

    ADS  Google Scholar 

  46. S. Mnefgui, N. Zaidi, N. Dhahri, J. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 384, 219 (2015)

    ADS  Google Scholar 

  47. J. Fontcuberta, J. Phys. World 12, 33–38 (1999)

    Google Scholar 

  48. N. Khare, U.P. Moharil, B. Singh, A.K. Gupta, J. Sci. Lett. 26, 214–218 (2003)

    Google Scholar 

  49. M. Khlifi, E. Dhahri, E.K. Hlil, J. Alloys Compd. 587, 771 (2014)

    Google Scholar 

  50. Y. Sun, W. Tong, X. Xu, Y. Zhang, Appl. Phys. 78, 5 (2001)

    Google Scholar 

  51. F. Elleuch, M. Triki, M. Bekri, E. Dhahri, E.K. Hlil, J. Alloys Compd. 620, 249 (2015)

    Google Scholar 

  52. N. Kallel, K. Frohlich, S. Pignard, M. Oumezzine, H. Vincent, J. Alloys Compd. 399, 20 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Mnefgui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnefgui, S., Ben Hassine, A., Bouazizi, M.L. et al. Critical Behavior and Its Correlation with Magneto-Electrical Properties in La0.47Ln0.2Pb0.33MnO3 (Ln = Y and Eu) Polycrystalline. J Low Temp Phys 201, 500–514 (2020). https://doi.org/10.1007/s10909-020-02520-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02520-4

Keywords

Navigation