Skip to main content
Log in

A tunable ultra-wideband metamaterial absorber based on graphene

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A tunable ultra-wideband metamaterial absorber based on graphene is presented herein. Its absorption exceeds 90% from 1.57 to 8.46 GHz when the Fermi level of the graphene is 0.7 eV, and it can be tuned by changing the bias voltage applied on the graphene. To explore the mechanism of its wideband absorption and tunability, the surface current of the metamaterial absorber at given absorption frequency is monitored for different Fermi levels. Further simulation results indicate that the absorption by the metamaterial absorber is insensitive to the polarization state of the incident wave but sensitive to its angle of incidence. The absorber offers the advantages of simplicity, ultra-wideband operation, and tunable absorption, having potential applications in the fields of electromagnetic stealth technology, detectors, and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  Google Scholar 

  2. Liu, T., Cao, X.Y., Gao, J., Zheng, Q.R., Li, W.Q.: Design of metamaterial absorber and its applications for waveguide slot antenna. Acta Phys. Sin. 61, 128–135 (2012)

    Google Scholar 

  3. Gu, C., Qu, S.B., Pei, Z.B., Xu, Z., Lin, B.Q., Ma, H., Bai, P., Peng, W.D., Zhou, H.: Parallel metal-wire quasi-omnidirectional terahertz metamaterial absorber. Sci. Sin. Phys. Mech. Astron. 41, 280–285 (2011)

    Article  Google Scholar 

  4. Karaaslan, M., Bağmancı, M., Ünal, E., Akgol, O., Sabah, C.: Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications. Opt. Commun. 392, 31–38 (2017)

    Article  Google Scholar 

  5. Zhang, H.Y., Huang, X.Y., Chen, Q., Ding, C.F., Li, T.T., Lü, H.H., Xu, S.L., Zhang, X., Zhang, Y.P., Yao, J.Q.: Tunable terahertz absorber based on complementary graphene meta-surface. Acta Phys. Sin. 65, 377–383 (2016)

    Google Scholar 

  6. Kim, J., Han, K., Hahn, J.W.: Selective dual-band metamaterial perfect absorber for infrared stealth technology. Sci. Rep. 7, 6740 (2017)

    Article  Google Scholar 

  7. Hao, J.M., Wang, J., Liu, X.L., Padilla, W., Zhou, L.: High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010)

    Article  Google Scholar 

  8. Wang, B.X., Xiang, Z., Wang, G.Z., Huang, W.Q., Wang, L.: A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys. 117, 014504 (2015)

    Article  Google Scholar 

  9. Wang, W.J., Wang, J.F., Yan, M.B., Lu, L., Ma, H., Qu, S.B., Chen, H.Y., Xu, C.L.: Ultra-thin multiband metamaterial absorber based on multi-order plasmon resonances. Acta Phys. Sin. 63, 174101 (2014)

    Google Scholar 

  10. Gu, C., Qu, S.B., Pei, Z.B., Xu, Z., Lin, B.Q., Zhou, H., Bai, P., Gu, W., Peng, W.D., Ma, H.: Design of a wide-band metamaterial absorber based on resistance films. Acta Phys. Sin. 60, 668–672 (2011)

    Google Scholar 

  11. Sun, L.K., Cheng, H.F., Zhou, Y.J., Wang, J.: Broadband metamaterial absorber based on coupling resistive frequency selective surface. Opt. Express 20(4), 4675–4680 (2012)

    Article  Google Scholar 

  12. Pang, Y.Q., Cheng, H.F., Zhou, Y.J., Wang, J.: Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces. J. Phys. D Appl. Phys. 45(21), 2151041–2151045 (2012)

    Article  Google Scholar 

  13. Wang, H., Kong, P., Cheng, W.T., Bao, W.Z., Yu, X.W., Miao, L., Jiang, J.J.: Broadband tenability of polarization-insensitive absorber based on frequency selective surface. Sci. Rep. 6, 230811–230818 (2016)

    Google Scholar 

  14. An, S.N., Xu, H.B., Zhang, Y.L., Wu, S., Jiang, J.J., He, Y., Miao, L.: Design of a polarization-insensitive wideband tunable metamaterial absorber based on split semi-circle ring resonator. J. Appl. Phys. 122(2), 0251131–0251135 (2017)

    Article  Google Scholar 

  15. Shen, Y., Zhang, J.Q., Pang, Y.Q., Zheng, L., Wang, J.F., Ma, H., Qu, S.B.: Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction. Sci. Rep. 8, 44231–442310 (2018)

    Google Scholar 

  16. Wang, Y., Leng, Y.B., Dong, L.H., Wang, L., Liu, S.R., Wang, J., Sun, Y.J.: Design of tunable metamaterial absorber based on graphene-metal hybrid structure. Acta Phys. Sin. 38(7), 0716001 (2018)

    Google Scholar 

  17. Li, H.J., Wang, L., Sun, B., Huang, Z.R., Xiang, Z.: Tunable mid-infrared plasmonic band-pass filter based on a single graphene sheet with cavities. J. Appl. Phys. 116(22), 2245051–2245056 (2014)

    Google Scholar 

  18. Valmorra, F., Scalari, G., Maissen, C., Fu, W.Y., Schoenenberger, C., Choi, J.W., Park, H.G., Beck, M., Faist, J.: Low bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett. 13(7), 3193–3198 (2013)

    Article  Google Scholar 

  19. Fallahi, A., Perruisseau-Carrier, J.: Design of tunable bi periodic graphene metasurfaces. Phys. Rev. B 86(19), 195408 (2012)

    Article  Google Scholar 

  20. Huang, X., Hu, Z., Liu, P.: Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction. AIP Adv. 4(11), 117103 (2014)

    Article  Google Scholar 

  21. Balci, O., Polat, E.O., Kakenov, N., et al.: Graphene enabled electrically switchable radar absorbing surfaces. Nat. Commun. 6, 6628 (2015)

    Article  Google Scholar 

  22. Yi, D., Wei, X.C., Xu, Y.L.: Tunable microwave absorber based on patterned graphene. IEEE Trans. Microw. Theory Tech. 65(8), 2819–2826 (2017)

    Article  Google Scholar 

  23. Wang, Y., Leng, Y.B., Dong, L.H., et al.: Design of tunable metamaterial absorber based on graphene-metal hybrid structure. Acta. Opt. Sin. 38(7), 0716001 (2018)

    Article  Google Scholar 

  24. Liu, L.Y., Zhang, Z.J., Liu, L.X.: Research on broadband metamaterial absorber based on lumped resistance. J. Microw. 32(5), 50–54 (2016)

    Google Scholar 

  25. Smith, D.R., Schultz, S.: Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)

    Article  Google Scholar 

  26. Chen, J.F., Huang, X.T., Zerihun, G., Hu, Z.Y., Wang, S.M., Wang, G.D., Hu, X.W.: Polarization-independent, thin, broadband metamaterial absorber using double-circle rings loaded with lumped resistances. J. Electron. Mater. 44, 4269–4274 (2015)

    Article  Google Scholar 

  27. Bhattacharyya, S., Ghosh, S., Srivastava, K.V.: Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J. Appl. Phys. 114, 094514 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Hainan Natural Science Foundation of China (119MS074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xia, D., Fu, Q. et al. A tunable ultra-wideband metamaterial absorber based on graphene. J Comput Electron 20, 107–115 (2021). https://doi.org/10.1007/s10825-020-01556-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01556-9

Keywords

Navigation