Skip to main content
Log in

On reliable modeling of substrate/buffer loading effects in a gallium nitride high-electron-mobility transistor on silicon substrate

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Currently, gallium nitride (GaN) on silicon (Si) high-electron-mobility transistors (HEMT) are a promising candidate for designing improved power electronic circuits. The lattice mismatch between GaN and Si induces buffer/substrate leakage currents that impact the performance of the device. In this paper, four different model topologies have been demonstrated to simulate the buffer/substrate loading effect in GaN on a Si HEMT. A particle swarm optimization-based procedure has been developed to extract reliable values for the model elements. The models are evaluated in term of reliability of extraction and accuracy of S-parameter fitting. The results showed that the RC-based model topologies have more accurate simulation for buffer/substrate leakage than the RLC-based topology. This will contribute to reliable and accurate small-/large-signal modeling of the device for designing efficient power circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Using an Intel Core i7 processor with 8 GB of RAM and utilizing MATLAB's parallel computing toolbox.

References

  1. Zeng, F., An, J.X., Zhou, G., et al.: A comprehensive review of recent progress on GaN high electron mobility transistors devices, fabrication and reliability. Electronics 7(12), 377 (2018)

    Article  Google Scholar 

  2. Pengelly, R.S., Wood, S.M., Milligan, J.W., et al.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60(6), 1764–1783 (2012)

    Article  Google Scholar 

  3. Roccaforte, F., Greco, G., Fiorenza, P., et al.: An overview of normally-off GaN-based high electron mobility transistors. Materials 12(10), 1599 (2019)

    Article  Google Scholar 

  4. Mishra, U.K., Shen, L., Kazior, T.E., et al.: GaN-based RF power devices and amplifiers. Proc. IEEE 96(2), 287–305 (2008)

    Article  Google Scholar 

  5. Pantellini, A., Nanni, A., Lanzieri, C: Thermal behavior of AlGaN/GaN HEMT on silicon Microstrip technology. In: 2011 6th European microwave integrated circuit conference, pp. 132–135 (2011)

  6. Chen, K.J., Häberlen, O., Lidow, A., et al.: GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64(3), 779–795 (2017)

    Article  Google Scholar 

  7. Perozek, J., Lee, H.-P., Krishnan, B., et al.: Investigation of structural, optical, and electrical characteristics of an AlGaN/GaN high electron mobility transistor structure across a 200 mm Si(111) substrate. J. Phys. D Appl. Phys. 50(5), 055103 (2017)

    Article  Google Scholar 

  8. Kompa, G.: Parameter extraction and complex nonlinear transistor models. Artech House, Norwood (2019)

    Google Scholar 

  9. Rudolph, M., Fager, C., Root, D.E.: Nonlinear transistor model parameter extraction techniques. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  10. Santarelli, A., Cignani, R., Gibiino, G.P., et al.: GaN FET nonlinear modeling based on double pulse I/V characteristics. IEEE Trans. Microw. Theory Tech. 62(12), 3262–3273 (2014)

    Article  Google Scholar 

  11. Jarndal, A.: On neural networks based electrothermal modeling of GaN devices. IEEE Access 7, 94205–94214 (2019)

    Article  Google Scholar 

  12. Cai, Y., Zhu, C., Jiu, L., et al.: Strain analysis of GaN HEMTs on (111) silicon with two transitional AlxGa1xN layers. Materials 11(10), 1968 (2018)

    Article  Google Scholar 

  13. Jarndal, A., Arivazhagan, L., Nirmal, D.: On the performance of GaN-on-silicon, silicon-carbide, and diamond substrates. Int. J. RF Microw. Comput.-Aided Eng. 30, e22196 (2020)

    Article  Google Scholar 

  14. Jarndal, A., Essaadali, R., Kouki, A.: A reliable parasitic extraction method applied to AlGaN/GaN HEMTs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(2), 211–219 (2016)

    Article  Google Scholar 

  15. Hussein, A., Jarndal, A.: Particle-swarm based small-signal modeling applied to GaN devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(9), 1816–1824 (2018)

    Article  Google Scholar 

  16. Rehman, S., Rafique, U., Ahmed, U. F., et al.: Effects of substrate on the AC performance of submicron GaN HEMTs. In: 13th International Conference on Emerging Technologies (ICET) (2017)

  17. Alt, A.R., Marti, D., Bolognesi, C.R.: Transistor modeling: robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microw. Mag. 14(4), 83–101 (2013)

    Article  Google Scholar 

  18. Chumbes, E., Schremer, A., Smart, J., et al.: AlGaN/GaN high electron mobility transistors on Si(111) substrates. IEEE Trans. Electron Dev. 48(3), 420–426 (2001)

    Article  Google Scholar 

  19. Jarndal, A.: Hybrid extraction method based on pinch-off S-parameters for Mm-wave modeling of GaN HEMTs. In: The IEEE 59th International Midwest Symposium on Circuits and Systems, October 2016, Abu Dhabi, UAE

  20. Jarndal, A.: On modeling of substrate loading in GaN HEMT using grey wolf algorithm. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01464-y

    Article  Google Scholar 

  21. Hussein, A. S., Jarndal, A. H.: On hybrid model parameter extraction of GaN HEMTs based on GA, PSO, and ABC optimization. In: 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, pp. 1–5 (2017). https://doi.org/10.1109/icecta.2017.8252069

  22. Panda, S., Padhy, N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 4, 1418–1427 (2008)

    Article  Google Scholar 

  23. Nagy, W., Singhal, S, Borges, R, et al.: 150 W GaN-on-Si RF power transistor. In: IEEE MTT-S International Microwave Symposium Digest, pp. 483–486 (2005)

  24. Agilent N5242A PNA-X Microwave Network Analyzer. Operating and Service Manual, Agilent Technol., Santa Clara, CA, USA, 2014

  25. Jarndal, A.: Measurements uncertainty and modeling reliability of GaN HEMTs. In: 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1–4 (2013)

  26. Goto, M., Ohta, Y., Aigo, T., et al.: A small-signal linear equivalent circuit of HEMTs fabricated on GaAs-on-Si wafers. IEEE Trans. Microw. Theory Tech. 44(5), 668–673 (1996)

    Article  Google Scholar 

  27. Crupi, G., Xiao, D., Schreurs, D., et al.: Accurate multibias equivalent-circuit extraction for GaN HEMTs. IEEE Trans. Microw. Theory Tech. 54(10), 3616–3622 (2006)

    Article  Google Scholar 

  28. Jarndal, A., Markos, A.Z., Kompa, G.: Improved modeling of GaN HEMT on Si substrate for design of RF power amplifiers. IEEE Trans. Microw. Theory Techn. 59(3), 644–651 (2011)

    Article  Google Scholar 

  29. Sahoo, A., Subramani, N., Nallatamby, J., et al.: Small signal modeling of high electron mobility transistors on silicon and silicon carbide substrate with consideration of substrate loss mechanism. Solid-State Electron. 115, 12–16 (2016)

    Article  Google Scholar 

  30. Arora, R.K.: Guided random search methods in optimization: algorithms and applications. Chapman and Hall, New York (2015)

    Book  Google Scholar 

  31. Jarndal, A., Kompa, G.: An accurate small-signal model for AlGaN-GaN HEMT suitable for scalable large-signal model construction. IEEE Microw. Wirel. Compon. Lett. 16(6), 333–335 (2006)

    Article  Google Scholar 

  32. Aaen, P., Plá, J.A., Wood, J.: Modeling and characterization of RF and microwave power FETs. U.K. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the University of Sharjah, Sharjah, United Arab Emirates. The authors also thank École de technologie supérieure, Montreal, Canada for providing the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Jarndal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarndal, A., Hussein, A.S. On reliable modeling of substrate/buffer loading effects in a gallium nitride high-electron-mobility transistor on silicon substrate. J Comput Electron 20, 503–514 (2021). https://doi.org/10.1007/s10825-020-01582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01582-7

Keywords

Navigation