Skip to main content
Log in

Design and Testing of a Mechanical Power Take-off System for Rolling-type Wave Energy Converter

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Salter’s Duck can convert wave energy to mechanical energy with high efficiency up to 90%. The limitations and challenges in the usage of Salter’s Duck for energy production include preventing hydraulic system from the risk of leaking hydraulic oil and removing complex huge fixed bracket. This paper presents the conceptual design and an experimental investigation of a mechanical power-take-off (PTO) system for the floating Salter’s Duck. The PTO system is fully installed inside of the Salter’s Duck. It consists of double counter-rotating flywheels converting the bi-directional rotation of the wave energy converter into a stable unidirectional rotation that drives a rotary generator to produce electricity. The bi-to-unidirectional function is achieved through inertial wheels, thus the novel PTO system is free of large supporting structures and hydraulic cylinders. In this paper, a detailed conceptual PTO design is proposed firstly. Further, the influence of the swing amplitude and rotation period of the wave energy converter on the power extraction efficiency is investigated. Then, the influence of the electrical load on the power-extraction efficiency is researched. In the end, the effect of the speed increasing ratio on the mechanical efficiency is examined. The experimental results show that the new type of generator mechanism can produce electricity stably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Yin-Bei, D., & Wen, X. (2004). Development and utilization of ocean energy. Renewable Energy, 38(8), 1811–1820.

    Google Scholar 

  2. Bastien, S. P. , Sepe, R. B. , Grilli, A. R. , Grilli, S. T. , & Spaulding, M. L., (2009). Ocean wave energy harvesting buoy for sensors. Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE. IEEE.

  3. Orazov, B., O’Reilly, O. M., & Savaş, Ö. (2010). On the dynamics of a novel ocean wave energy converter. Journal of Sound and Vibration, 329(24), 5058–5069.

    Article  Google Scholar 

  4. Aoun, N. S., Harajli, H. A., & Queffeulou, P. (2013). Preliminary appraisal of wave power prospects in Lebanon. Renewable Energy, 53, 165–173.

    Article  Google Scholar 

  5. Mueller, M. A. (2002). Electrical generators for direct drive wave energy converters. IEE Proceedings-generation, transmission and distribution, 149(4), 446–456.

    Article  Google Scholar 

  6. Berrie, T. W. (1967). The economics of system planning in bulk electricity supply. Electrical Review, 22, 425–428.

    Google Scholar 

  7. López, I., Andreu, J., Ceballos, S., de Alegría, I. M., & Kortabarria, I. (2013). Review of wave energy technologies and the necessary power-equipment. Renewable and sustainable energy reviews, 27, 413–434.

    Article  Google Scholar 

  8. Khan, N., Kalair, A., Abas, N., & Haider, A. (2017). Review of ocean tidal, wave and thermal energy technologies. Renewable and Sustainable Energy Reviews, 72, 590–604.

    Article  Google Scholar 

  9. Hicks, D. C., Pleass, C. M., & Mitcheson, G. R. (1988). Delbuoy: Wave-powered seawater desalination system. In OCEANS'88. ‘A Partnership of Marine Interests’. Proceedings (pp. 1049–1054). IEEE.

  10. Liu, Z., Shi, H., Cui, Y., & Kim, K. (2017). Experimental study on overtopping performance of a circular ramp wave energy converter. Renewable Energy, 104, 163–176.

    Article  Google Scholar 

  11. Zhang, Z. Y., Liu, H. X., Zhang, L., Zhang, W. C., & Ma, Q. W. (2018). Study on the performance analysis and optimization of funnel concept in wave-energy conversion. Journal of Marine Science and Technology, 23(3), 696–705.

    Article  Google Scholar 

  12. Cai, S. G., Ouahsine, A., & Sergent, P. (2016). Modelling wave energy conversion of a semi-submerged heaving cylinder. In Computational Methods for Solids and Fluids (pp. 67–79). Springer, Cham.

  13. Vakis, A. I., & Anagnostopoulos, J. S. (2016). Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter. Renewable Energy, 96, 531–547.

    Article  Google Scholar 

  14. Sheng, S., Wang, K., Lin, H., Zhang, Y., You, Y., Wang, Z., et al. (2017). Model research and open sea tests of 100 kW wave energy convertor Sharp Eagle Wanshan. Renewable Energy, 113, 587–595.

    Article  Google Scholar 

  15. Cruz, J. (2007). Ocean wave energy: current status and future prespectives. New York: Springer Science & Business Media.

    Google Scholar 

  16. Falnes, J. (2007). A review of wave-energy extraction. Marine Structures, 20(4), 185–201.

    Article  Google Scholar 

  17. Salter, S. (2016). Wave energy: Nostalgic Ramblings, future hopes and heretical suggestions. Journal of Ocean Engineering and Marine Energy, 2(4), 399–428.

    Article  MathSciNet  Google Scholar 

  18. Magagna, D., & Uihlein, A. (2015). Ocean energy development in Europe: Current status and future perspectives. International Journal of Marine Energy, 11, 84–104.

    Article  Google Scholar 

  19. Lehmann, M., Karimpour, F., Goudey, C. A., Jacobson, P. T., & Alam, M. R. (2017). Ocean wave energy in the United States: Current status and future perspectives. Renewable and Sustainable Energy Reviews, 74, 1300–1313.

    Article  Google Scholar 

  20. Antonio, F. D. O. (2010). Wave energy utilization: A review of the technologies. Renewable and sustainable energy reviews, 14(3), 899–918.

    Article  Google Scholar 

  21. Yang, S. H., Wang, Y. Q., He, H. Z., Zhang, J., & Chen, H. (2018). Dynamic properties and energy conversion efficiency of a floating multi-body wave energy converter. China Ocean Engineering, 32(3), 347–357.

    Article  Google Scholar 

  22. Prakash, S. S., Mamun, K. A., Islam, F. R., Mudliar, R., Pau'u, C., Kolivuso, M., & Cadralala, S. (2016, December). Wave energy converter: a review of wave energy conversion technology. In 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) (pp. 71–77). IEEE.

  23. Zhang, X. T., Yang, J. M., & Xiao, L. F. (2016). An oscillating wave energy converter with nonlinear snap-through power-take-off systems in regular waves. China Ocean Engineering, 30(4), 565–580.

    Article  Google Scholar 

  24. Zhang, Y. Q., Sheng, S. W., You, Y. G., Wu, B. J., & Liu, Y. (2014). Research on energy conversion system of floating wave energy converter. China Ocean Engineering, 28(1), 105–113.

    Article  Google Scholar 

  25. Zhang, D. H., Li, W., Zhao, H. T., Bao, J. W., & Lin, Y. G. (2014). Design of a hydraulic power take-off system for the wave energy device with an inverse pendulum. China Ocean Engineering, 28(2), 283–292.

    Article  Google Scholar 

  26. Energy, A. (2005). Oscillating water column wave energy converter evaluation report. The Carbon Trust, Marine Energy Challenge, pp. 1–196.

  27. Zheng, X. B., Jiang, J., & Zhang, L. (2013). Power characteristic analysis and optimization of point absorber wave energy converter. Applied mechanics and materials (Vol. 313, pp. 837–842). Zurich: Trans Tech Publications.

    Google Scholar 

  28. Salter, S. H. (1974). Wave power. Nature, 249(5459), 720–724.

    Article  Google Scholar 

  29. Salter, S. H. (1992, October). The swinging mace. In Proceedings of Workshop Wave Energy R&D, Cork, Ireland (pp. 197–206).

  30. Sakai, K., Kashiwagi, M., & Takaramoto, R. (2014). Wave-energy absorption by a rotating electric-power generator set inside an asymmetric floating body. Journal of the Society of Naval Architects of Japan, 19, 205–211.

    Google Scholar 

  31. Choi, K. S., Yang, D. S., Park, S. Y., & Cho, B. H. (2012). Design and performance test of hydraulic PTO for wave energy converter. International Journal of Precision Engineering and Manufacturing, 13(5), 795–801.

    Article  Google Scholar 

  32. Tri, N. M., Binh, P. C., & Ahn, K. K. (2018). Power take-off system based on continuously variable transmission configuration for wave energy converter. International Journal Precision Engineering Manufacturing-Green Technology, 5(1), 103–110.

    Article  Google Scholar 

  33. Dang, T. D., Nguyen, M. T., Phan, C. B., & Ahn, K. K. (2019). Development of a wave energy converter with mechanical power take-off via supplementary inertia control. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(3), 497–509.

    Article  Google Scholar 

  34. Dang, T. D., Phan, C. B., & Ahn, K. K. (2019). Modeling and experimental investigation on performance of a wave energy converter with mechanical power take-off. International Journal of Precision Engineering and Manufacturing Green Technology, 6(4), 751–768.

    Article  Google Scholar 

  35. Dang, T. D., Phan, C. B., & Ahn, K. K. (2019). Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing Green Technology, 6, 477–488. https://doi.org/10.1007/s40684-019-00065-w.

    Article  Google Scholar 

  36. Prudell, J., Stoddard, M., Amon, E., Brekken, T. K., & Von Jouanne, A. (2010). A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Transactions on Industry Applications, 46(6), 2392–2400.

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by Qingdao National Laboratory for Marine Science and Technology (QNLM2016ORP0402); and the State Key Laboratory of Robotics (No. 2019-O19). The authors would like to thank their support.

Funding

This research was funded by Qingdao National Laboratory for Marine Science and Technology (QNLM2016ORP0402) and the State Key Laboratory of Robotics (No. 2019-O19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Sun.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8350 kb)

Supplementary file2 (MP4 4747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Peng, Y., Sun, Y. et al. Design and Testing of a Mechanical Power Take-off System for Rolling-type Wave Energy Converter. Int. J. of Precis. Eng. and Manuf.-Green Tech. 8, 1487–1499 (2021). https://doi.org/10.1007/s40684-020-00253-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-020-00253-z

Keywords

Navigation