Skip to main content
Log in

A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Recently proposed methods for weakly-supervised semantic segmentation have achieved impressive performance in predicting pixel classes despite being trained with only image labels which lack positional information. Because image annotations are cheaper and quicker to generate, weak supervision is more practical than full supervision for training segmentation algorithms. These methods have been predominantly developed to solve the background separation and partial segmentation problems presented by natural scene images and it is unclear whether they can be simply transferred to other domains with different characteristics, such as histopathology and satellite images, and still perform well. This paper evaluates state-of-the-art weakly-supervised semantic segmentation methods on natural scene, histopathology, and satellite image datasets and analyzes how to determine which method is most suitable for a given dataset. Our experiments indicate that histopathology and satellite images present a different set of problems for weakly-supervised semantic segmentation than natural scene images, such as ambiguous boundaries and class co-occurrence. Methods perform well for datasets they were developed on, but tend to perform poorly on other datasets. We present some practical techniques for these methods on unseen datasets and argue that more work is needed for a generalizable approach to weakly-supervised semantic segmentation. Our full code implementation is available on GitHub: https://github.com/lyndonchan/wsss-analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. https://github.com/xtudbxk/SEC-tensorflow.

  2. https://github.com/xtudbxk/DSRG-tensorflow.

  3. https://github.com/lyndonchan/hsn_v1.

  4. https://github.com/lyndonchan/wsss-analysis.

References

  • Ahn, J., & Kwak, S. (2018). Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In CoRR. arXiv preprint arXiv:1803.10464.

  • Ahn, J., Cho, S., & Kwak, S. (2019). Weakly supervised learning of instance segmentation with inter-pixel relations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2209–2218.

  • Aresta, G., et al. (2018). BACH: Grand challenge on breast cancer histology images. In CoRR. arXiv preprint arXiv:1808.04277.

  • Audebert, N., Le Saux, B., & Lefèvre, S. (2017). Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images. Remote Sensing, 9(4), 368.

    Article  Google Scholar 

  • Bearman, A., Russakovsky, O., Ferrari, V., & Fei-Fei, L. (2016). What’s the point: Semantic segmentation with point supervision. In European conference on computer vision, Springer, pp. 549–565.

  • Beck, A. H., Sangoi, A. R., Leung, S., Marinelli, R. J., Nielsen, T. O., Van De Vijver, M. J., et al. (2011). Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images. Science Translational Medicine, 3(108), 108ra113–108ra113.

    Article  Google Scholar 

  • Brostow, G. J., Shotton, J., Fauqueur, J., & Cipolla, R. (2008). Segmentation and recognition using structure from motion point clouds. In European conference on computer vision, Springer, pp. 44–57.

  • Caesar, H., Uijlings, J., & Ferrari, V. (2018). Coco-stuff: Thing and stuff classes in context. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1209–1218.

  • Chan, L., Hosseini, M. S., Rowsell, C., Plataniotis, K. N., & Damaskinos, S. (2019). Histosegnet: Semantic segmentation of histological tissue type in whole slide images. In International conference on computer vision (ICCV).

  • Chen, H., Qi, X., Yu, L., Heng, & P. A. (2016). Dcan: Deep contour-aware networks for accurate gland segmentation. In The IEEE conference on computer vision and pattern recognition (CVPR).

  • Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:14127062.

  • Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017a). Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.

    Article  Google Scholar 

  • Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017b). Rethinking Atrous convolution for semantic image segmentation. arXiv preprint arXiv:170605587.

  • Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with Atrous separableconvolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), pp. 801–818.

  • Ciresan, D., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. In Advances in neural information processing systems, Vol. 25, Curran Associates, Inc., pp. 2843–2851.

  • Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. Medical image computing and computer-assisted intervention- MICCAI 2013 (pp. 411–418). Berlin: Springer.

    Chapter  Google Scholar 

  • Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3213–3223.

  • Dai, J., He, K., & Sun, J. (2015). Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proceedings of the IEEE international conference on computer vision, pp. 1635–1643.

  • Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., & Raskar, R. (2018). Deepglobe 2018: A challenge to parse the earth through satellite images. In The IEEE conference on computer vision and pattern recognition (CVPR) workshops.

  • Durand, T., Mordan, T., Thome, N., & Cord, M. (2017). Wildcat: Weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 642–651.

  • Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The Pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2), 303–338.

    Article  Google Scholar 

  • Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2012). Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1915–1929.

    Article  Google Scholar 

  • Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2019). Dual attention network for scene segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3146–3154.

  • Gao, J., Liao, W., Nuyttens, D., Lootens, P., Vangeyte, J., Pižurica, A., et al. (2018). Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 67, 43–53.

    Article  Google Scholar 

  • Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., & Malik, J. (2011). Semantic contours from inverse detectors. In International conference on computer vision (ICCV).

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

  • Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

  • Hosseini, M. S., Chan, L., Tse, G., Tang, M., Deng, J., Norouzi, S., Rowsell, C., Plataniotis, K. N., & Damaskinos, S. (2019). Atlas of digital pathology: A generalized hierarchical histological tissue type-annotated database for deep learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 11747–11756.

  • Hou, L., Samaras, D., Kurc, T. M., Gao, Y., Davis, J. E., & Saltz, J. H. (2016). Patch-based convolutional neural network for whole slide tissue image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2424–2433.

  • Huang, Z., Wang, X., Wang, J., Liu, W., & Wang, J. (2018). Weakly-supervised semantic segmentation network with deep seeded region growing. In 2018 IEEE/CVF conference on computer vision and pattern recognition, pp. 7014–7023.

  • Jia, Z., Huang, X., Eric, I., Chang, C., & Xu, Y. (2017). Constrained deep weak supervision for histopathology image segmentation. IEEE Transactions on Medical Imaging, 36(11), 2376–2388.

    Article  Google Scholar 

  • Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., & Li, S. (2013). Salient object detection: A discriminative regional feature integration approach. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2083–2090.

  • Kainz, P., Pfeiffer, M., & Urschler, M. (2015). Semantic segmentation of colon glands with deep convolutional neural networks and total variation segmentation. In CoRR. arXiv preprint arXiv:1511.06919.

  • Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C. A., et al. (2019). Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Medicine, 16(1), e1002730.

    Article  Google Scholar 

  • Kather, J. N., Weis, C. A., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., et al. (2016). Multi-class texture analysis in colorectal cancer histology. Scientific Reports, 6, 27988.

    Article  Google Scholar 

  • Kervadec, H., Dolz, J., Tang, M., Granger, E., Boykov, Y., & Ayed, I. B. (2019). Constrained-cnn losses for weakly supervised segmentation. Medical Image Analysis, 54, 88–99.

    Article  Google Scholar 

  • Kolesnikov, A., & Lampert, C. H. (2016a). Improving weakly-supervised object localization by micro-annotation. arXiv preprint arXiv:160505538.

  • Kolesnikov, A., & Lampert, C. H. (2016b). Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In CoRR. arXiv preprint arXiv:1603.06098.

  • Kothari, S., Phan, J. H., Young, A. N., & Wang, M. D. (2013). Histological image classification using biologically interpretable shape-based features. BMC Medical Imaging, 13(1), 9.

    Article  Google Scholar 

  • Krähenbühl, P., & Koltun, V. (2011). Efficient inference in fully connected CRFs with Gaussian edge potentials. In Advances in neural information processing systems, pp. 109–117.

  • Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., & Sethi, A. (2017). A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Transactions on Medical Imaging, 36(7), 1550–1560. https://doi.org/10.1109/TMI.2017.2677499.

    Article  Google Scholar 

  • Kuo, T. S., Tseng, K. S., Yan, J. W., Liu, Y. C., & Wang, Y. C. F. (2018). Deep aggregation net for land cover classification. In CVPR workshops, pp. 252–256

  • Kwak, S., Hong, S., & Han, B. (2017). Weakly supervised semantic segmentation using superpixel pooling network. In Thirty-first AAAI conference on artificial intelligence.

  • Lee, J., Kim, E., Lee, S., Lee, J., & Yoon, S. (2019). Ficklenet: Weakly and semi-supervised semantic image segmentation using stochastic inference. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5267–5276.

  • Lenz, M., Roumans, N. J., Vink, R. G., van Baak, M. A., Mariman, E. C., Arts, I. C., et al. (2016). Estimating real cell size distribution from cross-section microscopy imaging. Bioinformatics, 32(17), i396–i404.

    Article  Google Scholar 

  • Li, W., Manivannan, S., Akbar, S., Zhang, J., Trucco, E., & McKenna, S. J. (2016). Gland segmentation in colon histology images using hand-crafted features and convolutional neural networks. In 2016 IEEE 13th international symposium on biomedical imaging (ISBI), pp. 1405–1408. https://doi.org/10.1109/ISBI.2016.7493530.

  • Lin, D., Dai, J., Jia, J., He, K., & Sun, J. (2016). Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3159–3167.

  • Lin, H., Chen, H., Dou, Q., Wang, L., Qin, J., & Heng, P. (2017a). Scannet: A fast and dense scanning framework for metastatic breast cancer detection from whole-slide images. In CoRR. arXiv preprint arXiv:1707.09597.

  • Lin, H., Chen, H., Dou, Q., Wang, L., Qin, J., & Heng, P. A. (2018). Scannet: A fast and dense scanning framework for metastastic breast cancer detection from whole-slide image. In 2018 IEEE winter conference on applications of computer vision (WACV), IEEE, pp. 539–546.

  • Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017b). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125.

  • Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer vision, Springer, pp. 740–755.

  • Liu, C., Yuen, J., & Torralba, A. (2010). Sift flow: Dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 978–994.

    Article  Google Scholar 

  • Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440.

  • Malon, C., & Cosatto, E. (2013). Classification of mitotic figures with convolutional neural networks and seeded blob features. In Journal of pathology informatics.

  • Mnih, V., & Hinton, G. E. (2010). Learning to detect roads in high-resolution aerial images. In European conference on computer vision, Springer, pp. 210–223.

  • Mottaghi, R., Chen, X., Liu, X., Cho, N. G., Lee, S. W., Fidler, S., Urtasun, R., & Yuille, A. (2014). The role of context for object detection and semantic segmentation in the wild. In IEEE conference on computer vision and pattern recognition (CVPR).

  • Neuhold, G., Ollmann, T., Rota Bulo, S., & Kontschieder, P. (2017). The mapillary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE international conference on computer vision, pp. 4990–4999.

  • Nivaggioli, A., & Randrianarivo, H. (2019). Weakly supervised semantic segmentation of satellite images. arXiv preprint arXiv:190403983.

  • Papandreou, G., Chen, L., Murphy, K., & Yuille, A. L. (2015). Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. In CoRR. arXiv preprint arXiv:1502.02734

  • Pathak, D., Krahenbuhl, P., & Darrell, T. (2015). Constrained convolutional neural networks for weakly supervised segmentation. In Proceedings of the IEEE international conference on computer vision, pp. 1796–1804.

  • Pathak, D., Shelhamer, E., Long, J., & Darrell, T. (2014). Fully convolutional multi-class multiple instance learning. In CoRR. arXiv preprint arXiv:1412.7144

  • Prince, S. J. (2012a). Computer vision: Models, learning, and inference (pp. 201–208). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Prince, S. J. (2012b). Computer vision: Models, learning, and inference (p. 15). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rahnemoonfar, M., Murphy, R., Miquel, M.V., Dobbs, D., & Adams, A. (2018). Flooded area detection from UAV images based on densely connected recurrent neural networks. In IGARSS 2018-2018 IEEE international geoscience and remote sensing symposium, IEEE, pp. 1788–1791.

  • Riordan, D. P., Varma, S., West, R. B., & Brown, P. O. (2015). Automated analysis and classification of histological tissue features by multi-dimensional microscopic molecular profiling. PLoS ONE, 10(7), e0128975.

    Article  Google Scholar 

  • Robinson, C., Hou, L., Malkin, K., Soobitsky, R., Czawlytko, J., Dilkina, B., & Jojic, N. (2019). Large scale high-resolution land cover mapping with multi-resolution data. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 12726–12735.

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention, Springer, pp. 234–241.

  • Roux, L., Racoceanu, D., Loménie, N., Kulikova, M., Irshad, H., Klossa, J., Capron, F., Genestie, C., le Naour, G., & Gurcan, M. N. (2013). Mitosis detection in breast cancer histological images an ICPR 2012 contest. In Journal of pathology informatics.

  • Saleh, F., Akbarian, M. S. A., Salzmann, M., Petersson, L., Gould, S., & Alvarez, J. M. (2016). Built-in foreground/background prior for weakly-supervised semantic segmentation. In CoRR. arXiv preprint arXiv:abs/1609.00446

  • Seferbekov, S. S., Iglovikov, V., Buslaev, A., & Shvets, A. (2018). Feature pyramid network for multi-class land segmentation. In CVPR workshops, pp. 272–275.

  • Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626.

  • Shapiro, L., & Stockman, G. (2000). Computer vision (pp. 305–306). London: Pearson.

    Google Scholar 

  • Shimoda, W., & Yanai, K. (2016). Distinct class-specific saliency maps for weakly supervised semantic segmentation. In European conference on computer vision, Springer, pp. 218–234.

  • Shkolyar, A., Gefen, A., Benayahu, D., & Greenspan, H. (2015). Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 743–746.

  • Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In European conference on computer vision, Springer, pp. 1–15.

  • Sirinukunwattana, K., Pluim, J. P., Chen, H., Qi, X., Heng, P. A., Guo, Y. B., et al. (2017). Gland segmentation in colon histology images: The glas challenge contest. Medical Image Analysis, 35, 489–502.

    Article  Google Scholar 

  • Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE winter conference on applications of computer vision (WACV), IEEE, pp. 464–472.

  • Tian, C., Li, C., & Shi, J. (2018). Dense fusion classmate network for land cover classification. In CVPR workshops, pp. 192–196.

  • Tian, C., Li, C., & Shi, J. (2019). Dense fusion classmate network for land cover classification. arXiv preprint arXiv:191108169.

  • Tsoumakas, G., Katakis, I., & Vlahavas, I. (2009). Mining multi-label data. In Data mining and knowledge discovery handbook, Springer, pp. 667–685.

  • Turkki, R., Linder, N., Kovanen, P., Pellinen, T., & Lundin, J. (2016). Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. Journal of Pathology Informatics, 7(1), 38. https://doi.org/10.4103/2153-3539.189703.

    Article  Google Scholar 

  • Veta, M., et al. (2014). Assessment of algorithms for mitosis detection in breast cancer histopathology images. Medical Image Analysis,. https://doi.org/10.1016/j.media.2014.11.010.

    Article  Google Scholar 

  • Wang, X., Chen, H., Gan, C. H. K., Lin, H., Dou, Q., Huang, Q., Cai, M., & Heng, P. A. (2018). Weakly supervised learning for whole slide lung cancer image classification. In IEEE transactions on cybernetics.

  • Wang, P., Huang, X., Cheng, X., Zhou, D., Geng, Q., & Yang, R. (2019b). The apolloscape open dataset for autonomous driving and its application. In IEEE transactions on pattern analysis and machine intelligence.

  • Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al. (2019a). Deep high-resolution representation learning for visual recognition. arXiv preprint arXiv:190807919.

  • Wei, Y., Feng, J., Liang, X., Cheng, M., Zhao, Y., & Yan, S. (2017). Object region mining with adversarial erasing: A simple classification to semantic segmentation approach. In CoRR. arXiv preprint arXiv:1703.08448

  • Wei, Y., Xiao, H., Shi, H., Jie, Z., Feng, J., & Huang, T. S. (2018). Revisiting dilated convolution: A simple approach for weakly-and semi-supervised semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7268–7277.

  • Xia, F., Wang, P., Chen, X., & Yuille, A. L. (2017). Joint multi-person pose estimation and semantic part segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6769–6778.

  • Xie, J., Liu, R., Luttrell, I., Zhang, C., et al. (2019). Deep learning based analysis of histopathological images of breast cancer. Frontiers in Genetics, 10, 80.

    Article  Google Scholar 

  • Xu, J., Schwing, A. G., & Urtasun, R. (2015). Learning to segment under various forms of weak supervision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3781–3790.

  • Xu, Y., Jia, Z., Wang, L. B., Ai, Y., Zhang, F., Lai, M., et al. (2017). Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics, 18(1), 281.

    Article  Google Scholar 

  • Xu, J., Luo, X., Wang, G., Gilmore, H., & Madabhushi, A. (2016). A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing, 191, 214–223.

    Article  Google Scholar 

  • Xu, Y., Zhu, J. Y., Eric, I., Chang, C., Lai, M., & Tu, Z. (2014). Weakly supervised histopathology cancer image segmentation and classification. Medical Image Analysis, 18(3), 591–604.

    Article  Google Scholar 

  • Yang, Y., & Newsam, S. (2010). Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, ACM, pp. 270–279.

  • Yao, X., Han, J., Cheng, G., Qian, X., & Guo, L. (2016). Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3660–3671.

    Article  Google Scholar 

  • Ye, L., Liu, Z., & Wang, Y. (2018). Learning semantic segmentation with diverse supervision. In 2018 IEEE winter conference on applications of computer vision (WACV), IEEE, pp. 1461–1469.

  • Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., & Darrell, T. (2018). Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:180504687.

  • Yuan, Y., Chen, X., & Wang, J. (2019). Object-contextual representations for semantic segmentation. arXiv preprint arXiv:190911065.

  • Zhang, C., Li , H., Wang, X., & Yang, X. (2015a). Cross-scene crowd counting via deep convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 833–841.

  • Zhang, C., Wei, S., Ji, S., & Lu, M. (2019). Detecting large-scale urban land cover changes from very high resolution remote sensing images using cnn-based classification. ISPRS International Journal of Geo-Information, 8(4), 189.

    Article  Google Scholar 

  • Zhang, X., Su, H., Yang, L., & Zhang, S. (2015b). Fine-grained histopathological image analysis via robust segmentation and large-scale retrieval. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5361–5368.

  • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921–2929.

  • Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., & Torralba, A. (2017). Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 633–641.

  • Zhou, Y., Zhu, Y., Ye, Q., Qiu, Q., & Jiao, J. (2018). Weakly supervised instance segmentation using class peak response. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3791–3800.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lyndon Chan or Mahdi S. Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1297 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, L., Hosseini, M.S. & Plataniotis, K.N. A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains. Int J Comput Vis 129, 361–384 (2021). https://doi.org/10.1007/s11263-020-01373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-020-01373-4

Keywords

Navigation