Skip to main content
Log in

Transition Functions of Diffusion Processes on the Thoma Simplex

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

The paper deals with a three-dimensional family of diffusion processes on an infinite-dimensional simplex. These processes were constructed by Borodin and Olshanski in 2009 and 2010, and they include, as limit objects, the infinitely-many-neutral-allels diffusion model constructed by Ethier and Kurtz in 1981 and its extension found by Petrov in 2009.

Each process X in our family possesses a unique symmetrizing measure M, called the z-measure. Our main result is that the transition function of X has a continuous density with respect to M. This is a generalization of earlier results due to Ethier (1992) and to Feng, Sun, Wang, and Xu (2011). Our proof substantially uses a special basis in the algebra of symmetric functions, which is related to the Laguerre polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Baker and P. J. Forrester, “The Calogero-Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188:1 (1997), 175–216.

    Article  MathSciNet  Google Scholar 

  2. A. Borodin and G. Olshanski, “Z-measures on partitions and their scaling limits”, European J. Combin., 26:6 (2005), 795–834.

    Article  MathSciNet  Google Scholar 

  3. A. Borodin and G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Relat. Fields, 144:1–2 (2009), 281–318.

    Article  MathSciNet  Google Scholar 

  4. A. Borodin and G. Olshanski, “Markov dynamics on the Thoma cone: A model of time-dependent determinantal processes with infinitely many particles”, Electron. J. Probab., 18 (2013), 75.

    Article  MathSciNet  Google Scholar 

  5. P. Desrosiers and M. Hallnäs, “Hermite and Laguerre symmetric functions associated with operators of Calogero-Moser-Sutherland type”, SIGMA, 8 (2012), 049.

    MathSciNet  MATH  Google Scholar 

  6. S. N. Ethier, “Eigenstructure of the infinitely-many-neutral-alleles diffusion model”, J. Appl. Probab., 29:3 (1992), 487–498.

    Article  MathSciNet  Google Scholar 

  7. S. N. Ethier, “A property of Petrov’s diffusion”, Electron. Commun. Probab., 19 (2014), 65.

    Article  MathSciNet  Google Scholar 

  8. S. N. Ethier and T. G. Kurtz, “The infinitely-many-neutral-allels diffusion model”, Adv. Appl. Probab., 13:3 (1981), 429–452.

    Article  MathSciNet  Google Scholar 

  9. S. Feng, W. Sun, F.-Y. Wang, and F. Xu, “Functional inequalities for the two-parameter extension of the infinitely-many-neutral-alleles diffusion”, J. Funct. Anal., 260:2 (2011), 399–413.

    Article  MathSciNet  Google Scholar 

  10. O. Gorodetsky and B. Rodgers, The Variance of the Number of Sums of Two Squares in \({\mathbb{F}_q}[T]\;\)in Short Intervals, arXiv: 1810.06002.

  11. S. Kerov, “The boundary of Young lattice and random Young tableaux”, Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 24, Amer. Math. Soc., Providence, RI, 1996, pp. 133–158.

    Google Scholar 

  12. S. Kerov, A. Okounkov, and G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Int. Math. Res. Notices, 1998:4 (1998), 173–199.

    Article  MathSciNet  Google Scholar 

  13. J. F. C. Kingman, Poisson Processes, Clarendon Press, Oxford, 1993.

    MATH  Google Scholar 

  14. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  15. A. Okounkov and G. Olshanski, “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4:1 (1997), 68–78.

    Article  MathSciNet  Google Scholar 

  16. G. Olshanski, “Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter”, Int. Math. Res. Notices, 2010:6 (2010), 1102–1166.

    MathSciNet  MATH  Google Scholar 

  17. G. Olshanski, “Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes”, Zap. Nauchn. Semin. POMI, 378 (2010), 81–110; English transl.: J. Math. Sci. (New York), 174:1 (2011), 41–57.

    Google Scholar 

  18. G. I. Olshanski, “The topological support of the z-measures on the Thoma simplex”, Funkts. Anal. Prilozhen., 52:4 (2018), 86–88; English transl.: Functional Anal. Appl., 52:4 (2018), 308–310.

    Article  MathSciNet  Google Scholar 

  19. L. A. Petrov, “A Two-parameter family of infinite-dimensional diffusions in the Kingman simplex”, Funkts. Anal. Prilozhen., 43:4 (2009), 45–66; English transl.: Functional Anal. Appl., 43:4 (2009), 279–296.

    Article  MathSciNet  Google Scholar 

  20. J. Pitman, The Two-Parameter Generalization of Ewens’ Random Partition Structure, Technical report 345, Dept. Statistics, U. C. Berkeley, 1992, https://statistics.berkeley.edu/tech-reports/345.

Download references

Acknowledgments

I would like to express my gratitude to Grigori Olshanski for suggestions and remarks.

Funding

This work was funded by the Russian Academic Excellence Project’ 5–100.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Korotkikh.

Additional information

Russian Text © The Author(s), 2020, published in Funktsional’nyi Analiz i Ego Prilozheniya, 2020, Vol. 54, No. 2, pp. 58–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotkikh, S.Y. Transition Functions of Diffusion Processes on the Thoma Simplex. Funct Anal Its Appl 54, 118–134 (2020). https://doi.org/10.1134/S0016266320020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016266320020057

Key words

Navigation