Skip to main content
Log in

Integrated energy storage system based on triboelectric nanogenerator in electronic devices

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The emergence of electronic devices has brought earth-shaking changes to people’s life. However, an external power source may become indispensable to the electronic devices due to the limited capacity of batteries. As one of the possible solutions for the external power sources, the triboelectric nanogenerator (TENG) provides a novel idea to the increasing number of personal electronic devices. TENG is a new type of energy collector, which has become a hot spot in the field of nanotechnology. It is widely used at the acquisition and conversion of mechanical energy to electric energy through the principle of electrostatic induction. On this basis, the TENG could be integrated with the energy storage system into a self-powered system, which can supply power to the electronic devices and make them work continuously. In this review, TENG’s basic structure as well as its working process and working mode are firstly discussed. The integration method of TENGs with energy storage systems and the related research status are then introduced in detail. At the end of this paper, we put forward some problems and discuss the prospect in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang R, Qin Y, Li C, Dai L, Wang Z L. Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 2009, 94(2): 022905

    Article  CAS  Google Scholar 

  2. Gao Q F, Han Y, Liang P Y, Meng J. Influence of external electric field on the deprotonation reactions of Fe3+ solvated molecule: a reactive molecular dynamics study. Physical Chemistry Chemical Physics, 2020, 22: 6291–6299

    Article  CAS  PubMed  Google Scholar 

  3. Han Y, Zhang Q R, Wu L C. Influence on the adsorption of phenol on single-walled carbon nanotubes caused by NaCl and an electrostatic field in saline. Desalination, 2020, 477: 114270

    Article  CAS  Google Scholar 

  4. Liang K L, Li M F, Hao Y K, Yan W G, Cao M H, Fan S Q, Han W P, Su J. Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-ion storage. Chemical Engineering Journal, 2020, 394: 124956

    Article  CAS  Google Scholar 

  5. Zhu G, Lin Z H, Jing Q S, Bai P, Pan C F, Yang Y, Zhou Y S, Wang Z L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Letters, 2013, 13(2): 847–853

    Article  CAS  PubMed  Google Scholar 

  6. Choi D, Choi M Y, Shin H J, Yoon S M. Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. Journal of Physical Chemistry C, 2010, 114(2): 1379–1384

    Article  CAS  Google Scholar 

  7. Siddiqui S, Kim D I, Roh E. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy, 2016, 30: 434–442

    Article  CAS  Google Scholar 

  8. Gao Y, Wang Z L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 2007, 7(8): 2499–2505

    Article  CAS  PubMed  Google Scholar 

  9. Hou T C, Yang Y, Zhang H, Chen J, Chen L J, Wang Z L. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy, 2013, 2(5): 856–862

    Article  CAS  Google Scholar 

  10. Wang Z L. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy, 2020, 68:104272

    Article  CAS  Google Scholar 

  11. Zuo W, Li R, Zhou C, Li Y, Xia J, Liu J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Advanced Science, 2017, 4(7): 1600539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Katz E, Bückmann A F, Willner I. Self-powered enzyme-based biosensors. Journal of the American Chemical Society, 2001, 123 (43): 10752–10753

    Article  CAS  PubMed  Google Scholar 

  13. Xia G T, Li C, Wang K, Li L. Structural design and electrochemical performance of PANI/CNTs and MnO2/CNTs supercapacitor. Science of Advanced Materials, 2019, 11(8): 1079–1086

    Article  CAS  Google Scholar 

  14. Wang K, Li L, Lan Y, Dong P, Xia G. Application research of chaotic carrier frequency modulation technology in two-stage matrix converter. Mathematical Problems in Engineering, 2019, 2019: 2614327

    Google Scholar 

  15. Wang K, Li L, Xue W, Zhou S, Lan Y, Zhang H, Sui Z. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance. International Journal of Electrochemical Science, 2017, 12: 8306–8314

    CAS  Google Scholar 

  16. Wang J, Wu C, Dai Y, Zhao Z, Wang A, Zhang T, Wang Z L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nature Communications, 2017, 8: 88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang K, Pang J, Li L, Zhou S, Li Y, Zhang T. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 376–382

    Article  CAS  Google Scholar 

  18. Song J, Zhou J, Wang Z L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Letters, 2006, 6(8): 1656–1662

    Article  CAS  PubMed  Google Scholar 

  19. Shankaregowda S A, Nanjegowda C B, Cheng X L. A flexible and transparent graphene-based triboelectric nanogenerator. IEEE Transactions on Nanotechnology, 2016, 15(3): 435–441

    Article  CAS  Google Scholar 

  20. Wang K, Li L, Zhang T, Liu Z. Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy, 2014, 70: 612–617

    Article  CAS  Google Scholar 

  21. Dong W H, Liu J X, Mou X J, Liu G S, Huang X W, Yan X, Ning X, Russell S J, Long Y Z. Performance of polyvinyl pyrrolidoneisatis root antibacterial wound dressings produced in situ by handheld electrospinner. Colloids and Surfaces. B, Biointerfaces, 2020, 188: 110766

    Article  CAS  PubMed  Google Scholar 

  22. Lin Z, Wu Y, He Q, Sun C C, Fan E, Zhou Z, Liu M. An airtightcavity-structural triboelectric nanogenerator-based insole for high performance biomechanical energy harvesting. Nanoscale, 2019, 11(14): 6802–6809

    Article  PubMed  Google Scholar 

  23. Yang Y, Lin L, Zhang Y, Jing Q, Hou T C, Wang Z L. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano, 2012, 6(11): 10378–10383

    Article  CAS  PubMed  Google Scholar 

  24. Wang K, Li L, Zhang H. A novel synthesis of nickel oxide and its electrochemical performances. International Journal of Electrochemical Science, 2013, 8: 4785–4791

    CAS  Google Scholar 

  25. Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328–334

    Article  CAS  Google Scholar 

  26. Kim S, Gupta M K, Lee K Y, Sohn A, Kim T Y, Shin K S, Kim D, Kim S K, Lee K H, Shin H J. Transparent flexible graphene triboelectric nanogenerators. Advanced Materials, 2014, 26(23): 3918–3925

    Article  CAS  PubMed  Google Scholar 

  27. Meng Q, Cai K, Chen Y, Chen L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36: 268–285

    Article  CAS  Google Scholar 

  28. Zhou Q, Lee K, Kim K N, Park J G, Pan J, Bae J, Baik J M, Kim T. High humidity-and contamination-resistant triboelectric nanogenerator with superhydrophobic interface. Nano Energy, 2019, 57: 903–910

    Article  CAS  Google Scholar 

  29. Niu S, Liu Y, Wang S, Lin L, Zhou Y S, Hu Y, Wang Z L. Theory of sliding-mode triboelectric nanogenerators. Advanced Materials, 2013, 25(43): 6184–6193

    Article  CAS  PubMed  Google Scholar 

  30. Luo J, Wang Z L. Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials, 2019, 23: 617–628

    Article  Google Scholar 

  31. Wang Z L, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 2015, 8(8): 2250–2282

    Article  CAS  Google Scholar 

  32. Yang Y, Xie L, Wen Z, Chen C, Chen X, Wei A, Cheng P, Xie X, Sun X. Coaxial triboelectric nanogenerator and supercapacitor fiber-based self-charging power fabric. ACS Applied Materials & Interfaces, 2018, 10(49): 42356–42362

    Article  CAS  Google Scholar 

  33. Yang R, Qin Y, Li C, Zhu G, Wang Z L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Letters, 2009, 9(3): 1201–1205

    Article  CAS  PubMed  Google Scholar 

  34. Fan S, Zhang J, Teng X, Wang X, Li H, Li Q. Self-supported amorphous SnO2/TiO2 nanocomposite films with improved electrochemical performance for lithium-ion batteries. Journal of the Electrochemical Society, 2019, 166(13): A3072–A3078

    Article  CAS  Google Scholar 

  35. Bu C Y, Li F J, Yin K, Pang J B, Wang L C, Wang K. Research progress and prospect of triboelectric nanogenerators as self-powered human body sensors. ACS Applied Electronic Materials, 2020, 2(4): 863–878

    Article  CAS  Google Scholar 

  36. Wang L C, Yan R F, Bai F F, Saha T K, Wang K. A distributed inter-phase coordination algorithm for voltage control with unbalanced PV integration in LV systems. IEEE Transactions on Sustainable Energy, 2020, https://doi.org/10.1109/TSTE.2-020.2970214 (in press)

  37. Wang K, Feng X, Pang J B, Ren J, Duan C X, Li L W. State of charge (SOC) estimation of lithium-ion battery based on adaptive square root unscented Kalman filter. International Journal of Electrochemical Science, 2020, 15(9): 9499–9516

    Google Scholar 

  38. Duan C X, Yu Y, Xiao J, Zhang X L, Li L B, Yang P F, Wu J L, Xi H X. Water-based routes for synthesis of metal-organic frameworks: a review. Science China Materials, 2020, 63(5): 667–685

    Article  Google Scholar 

  39. Duan C X, Yu Y, Xiao J, Li Y Y, Yang P F, Hu F, Xi H X. Recent advancements in metal-organic frameworks for green applications. Green Energy & Environment, 2020, https://doi.org/10.1016/j.gee.2020.04.006 (in press)

  40. Liu F, Zeng L, Chen Y, Zhang R, Yang R, Pang J, Ding L, Liu H, Zhou W. Ni-Co-N hybrid porous nanosheets on graphene paper for flexible and editable asymmetric all-solid-state supercapacitors. Nano Energy, 2019, 61: 18–26

    Article  CAS  Google Scholar 

  41. Li Q, Li H S, Xia Q T, Hu Z Q, ZhuY, Yan S S, Ge C, Zhang Q H, Wang X X, Shang X T, et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2020, https://doi.org/10.1038/s41563-020-0756-y (in press)

  42. Pang J, Mendes R G, Bachmatiuk A, Zhao L. Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48(1): 72–133

    Article  CAS  PubMed  Google Scholar 

  43. Shu F, Wang M, Pang J, Yu P. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil. Frontiers of Chemical Science and Engineering, 2019, 13(2): 393–399

    Article  CAS  Google Scholar 

  44. Yang S, Yin K, Wu J, Wu Z, Chu D, He J, Duan J. Ultrafast nanostructuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. Nanoscale, 2019, 11: 17607–17614

    Article  CAS  PubMed  Google Scholar 

  45. Zhao Z C, Hu Z Q, Jiao R S, Tang Z H, Dong P, Li Y D, Li S D, Li H S. Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Materials, 2019, 22: 228–234

    Article  Google Scholar 

  46. Fan F R, Lin L, Zhu G, Wu W, Zhang R, Wang Z L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters, 2012, 12(6): 3109–3114

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 2017, 20 (2): 74–82

    Article  Google Scholar 

  48. Suo G, Yu Y, Zhang Z, Wang S, Zhao P, Li J, Wang X. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Applied Materials & Interfaces, 2016, 8(50): 34335–34341

    Article  CAS  Google Scholar 

  49. Bai P, Zhu G, Lin Z H, Jing Q, Chen J, Zhang G, Ma J, Wang Z L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano, 2013, 7 (4): 3713–3719

    Article  CAS  PubMed  Google Scholar 

  50. Li X, Tao J, Guo W, Zhang X, Luo J, Chen M, Zhu J, Pan C. A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(45): 22663–22668

    CAS  Google Scholar 

  51. Zhou T, Zhang C, Han C B, Fan F R, Tang W, Wang Z L. Woven structured triboelectric nanogenerator for wearable devices. ACS Applied Materials & Interfaces, 2014, 6(16): 14695–14701

    Article  CAS  Google Scholar 

  52. Luo J, Wang Z, Xu L, Wang A C, Han K, Jiang T, Lai Q, Bai Y, Fan F R, Wang Z L. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nature Communications, 2019, 10: 5174

    Article  CAS  Google Scholar 

  53. Jiang J, Kucernak A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 2002, 47(15): 2381–2386

    Article  CAS  Google Scholar 

  54. Zhou Y T, Wang Y N, Wang K, Kang L, Peng F, Wang L C, Pang J B. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. Applied Energy, 2020, 260: 114169

    Article  Google Scholar 

  55. Wang J, Li X, Zi Y, Wang S, Li Z, Zheng L, Yi F, Li S, Wang Z L. A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics. Advanced Materials, 2015, 27(33): 4830–4836

    Article  CAS  PubMed  Google Scholar 

  56. Dubal D P, Ayyad O, Ruiz V, Romero P G. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews, 2015, 44(7): 1777–1790

    Article  CAS  PubMed  Google Scholar 

  57. Luo J J, Wang Z L. Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials, 2019, 23: 617–628

    Article  Google Scholar 

  58. Niu S M, Liu Y, Wang S H, Lin L, Zhou Y S, Hu Y F, Wang Z L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Advanced Functional Materials, 2014, 24(22): 3332–3340

    Article  CAS  Google Scholar 

  59. Kim J, Lee J H, Lee J, Yamauchi Y, Choi C H, Kim J H. Research update: hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. APL Materials, 2017, 5(7): 073804

    Article  CAS  Google Scholar 

  60. Zhou Y, Huang Y, Pang J, Wang K. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. Journal of Power Sources, 2019, 440: 227149

    Article  CAS  Google Scholar 

  61. Dai Z, Wang K, Li L, Zhang T. Synthesis of nitrogen-doped graphene with microwave. International Journal of Electrochemical Science, 2013, 8(7): 9384–9389

    CAS  Google Scholar 

  62. Yin X, Liu D, Zhou L L, Li X Y, Zhang C L, Cheng P, Guo H Y, Song W X, Wang J, Wang Z L. Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode. ACS Nano, 2018, 13(1): 698–705

    Article  PubMed  CAS  Google Scholar 

  63. Wang X, Liu J, Song J, Wang Z L. Integrated nanogenerators in biofluid. Nano Letters, 2007, 7(8): 2475–2479

    Article  CAS  PubMed  Google Scholar 

  64. Guo Y, Zhang X S, Wang Y, Gong W, Zhang Q, Wang H, Brugger J. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy, 2018, 48: 152–160

    Article  CAS  Google Scholar 

  65. Xia K, Zhu Z, Zhang H, Xu Z. A triboelectric nanogenerator as self-powered temperature sensor based on PVDF and PTFE. Applied Physics. A, Materials Science & Processing, 2018, 124(8): 520

    Article  CAS  Google Scholar 

  66. Jiang C, Wu C, Li X, Yao Y, Lan Y, Zhao F, Ye Z, Ying Y. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy, 2019, 59: 268–276

    Article  CAS  Google Scholar 

  67. Yang Y, Zhang H, Chen J, Jing Q, Zhou Y S, Wen X, Wang Z L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano, 2013, 7 (8): 7342–7351

    Article  CAS  PubMed  Google Scholar 

  68. Kouchachvili L, Yaïci W, Entchev E. Hybrid battery/supercapacitor energy storage system for the electric vehicles. Journal of Power Sources, 2018, 374: 237–248 (in Chinese)

    Article  CAS  Google Scholar 

  69. Wang K, Ji B C, Han M J, Li L W. Preparation of nitrogen-doped graphene with solid microwave method. Chinese Journal of Inorganic Chemistry, 2013, 29(10): 2105–2109 (in Chinese)

    CAS  Google Scholar 

  70. Chong L W, Wong Y W, Rajkumar R K, Isa D. An adaptive learning control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system. Journal of Power Sources, 2018, 394: 35–49

    Article  CAS  Google Scholar 

  71. Ryu K S, Kim K M, Park N G, Park Y J, Chang S H. Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources, 2002, 103(2): 305–309

    Article  CAS  Google Scholar 

  72. Pu X, Li L, Song H, Du C, Zhao Z, Jiang C, Cao G, Hu W, Wang Z L. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Advanced Materials, 2015, 27(15): 2472–2478

    Article  CAS  PubMed  Google Scholar 

  73. Manandhar U, Tummuru N R, Kollimalla S K, Ukil A, Ben G H. Validation of faster joint control strategy for battery-and supercapacitor-based energy storage system. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3286–3295

    Article  Google Scholar 

  74. Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011, 196(1): 1–12

    Article  CAS  Google Scholar 

  75. Wang K, Li L W, Yin H X, Zhang T Z, Wan W B. Thermal modelling analysis of spiral wound supercapacitor under constant-current cycling. PLoS One, 2015, 10(10): e0138672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Tseng L H, Hsiao C H, Nguyen D D, Hsieh P Y, Lee C Y, Tai N H. Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochimica Acta, 2018, 266: 284–292

    Article  CAS  Google Scholar 

  77. Qiao Z, Deng W, Gang L. Stochastic control of predictive power management for battery/supercapacitor hybrid energy storage systems of electric vehicles. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3023–3030

    Article  Google Scholar 

  78. Huang Y, Wang L, Wang K. Investigation of Var compensation schemes in unbalanced distribution systems. Complexity, 2019, 2019: 7824743

    Google Scholar 

  79. Liu S, Yang Z, Zhang B, Xia H, Zhou J, Xie W, Li H. Nano-micro carbon spheres anchored on porous carbon derived from dualbiomass as high rate performance supercapacitor electrodes. Journal of Power Sources, 2018, 381: 116–126

    Article  CAS  Google Scholar 

  80. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Advanced Materials, 2014, 26 (17): 2676–2682

    Article  CAS  PubMed  Google Scholar 

  81. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z. Growth of polypyrrole ultrathin films on MoS2 monolayers as highperformance supercapacitor electrodes. Advanced Materials, 2015, 27(6): 1117–1123

    Article  CAS  PubMed  Google Scholar 

  82. Genovese M, Wu H, Virya A, Li J, Shen P, Lian K. Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochimica Acta, 2018, 273: 392–401

    Article  CAS  Google Scholar 

  83. Liu H X, Zhao L, Zhou Y T, Song J Y, Wang K, Li L W. Electrode preparation and properties of hybrid supercapacitors by the method of microwave heating. Science of Advanced Materials, 2019, 11 (8): 1072–1078

    Article  CAS  Google Scholar 

  84. Liu S, Wang J, Pang J, Song P, Chen L, Tang W, Xia W. An active and passive dual-loss Q-switched intracavity OPO based on few-layer WS2 saturable absorber. Optical Materials, 2020, 100: 109700

    Article  CAS  Google Scholar 

  85. Wang X X, Wang N, Qiu H J, Song W Z, Liu Q, Fan Z Y, Yu M, Ramakrishna S, Long Y Z. Anisotropic nanogenerator for anticounterfeiting and information encrypted transmission. Nano Energy, 2020, 71: 104572

    Article  CAS  Google Scholar 

  86. Hao Q, Pang J B, Zhang Y, Wang J W, Ma L B, Schmidt O G. Boosting the photoluminescence of monolayer MoS2 on high-density nanodimer arrays with sub-10 nm gap. Advanced Optical Materials, 2018, 6(2): 1700984

    Article  CAS  Google Scholar 

  87. Pang J B, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z F, Rummeli M H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2018, 8(8): 1702093

    Article  CAS  Google Scholar 

  88. Soni A, Zhao L, Ta H Q. Facile graphitization of silicon nano-particles with ethanol based chemical vapor deposition. Nano-Structures & Nano-Objects, 2018, 16: 38–44

    Article  CAS  Google Scholar 

  89. Faraji S, Ani F N. The development supercapacitor from activated carbon by electroless plating: A review. Renewable & Sustainable Energy Reviews, 2015, 42: 823–834

    Article  CAS  Google Scholar 

  90. Yu J, Xie F, Wu Z, Huang T, Wu J, Yan D, Huang C, Li L. Flexible metallic fabric supercapacitor based on graphene/polyaniline composites. Electrochimica Acta, 2018, 259: 968–974

    Article  CAS  Google Scholar 

  91. Rafik F, Gualous H, Gallay R, Crausaz A, Berthon A. Frequency, thermal and voltage supercapacitor characterization and modeling. Journal of Power Sources, 2007, 165(2): 928–934

    Article  CAS  Google Scholar 

  92. Deng W, Xu J J, Zhao H M. An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access, 2019, 7: 20281–20292

    Article  Google Scholar 

  93. Chen W C, Wen T C, Teng H S. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochimica Acta, 2003, 48 (6): 641–649

    Article  CAS  Google Scholar 

  94. Jiang H, Ma J, Li C. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Advanced Materials, 2012, 24(30): 4197–4202

    Article  CAS  PubMed  Google Scholar 

  95. Chiu C M, Chen S W, Pao Y P, Huang M Z, Chan S W, Lin Z H. A smart glove with integrated triboelectric nanogenerator for self-powered gesture recognition and language expression. Science and Technology of Advanced Materials, 2019, 20(1): 964–971

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang J, Wen Z, Zi Y L, Zhou P F, Lin J, Guo H Y, Xu Y L, Wang Z L. All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors. Advanced Functional Materials, 2016, 26(7): 1070–1076

    Article  CAS  Google Scholar 

  97. Pu X, Li L X, Liu M M, Jiang C Y, Du C H, Zhao Z F, Hu W G, Wang Z L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Advanced Materials, 2016, 28(1): 98–105

    Article  CAS  PubMed  Google Scholar 

  98. Xia G T, Huang Y, Li F, Wang L, Pang J, Li L, Wang K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Frontiers of Chemical Science and Engineering, 2020, https://doi.org/10.1007/s11705-019-1901-5

  99. Wang K, Li C, Ji B. Preparation of electrode based on plasma modification and its electrochemical application. Journal of Materials Engineering and Performance, 2014, 23(2): 588–592

    Article  CAS  Google Scholar 

  100. Wang K, Li L, Zhang H. Synthesis of nickel oxide/active carbon and electrochemical performance. International Journal of Electrochemical Science, 2013, 8: 5036–5041

    CAS  Google Scholar 

  101. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C, 2009, 113(30): 13103–13107

    Article  CAS  Google Scholar 

  102. Guo H Y, Yeh M H, Lai Y C, Zi Y L, Wu C S, Wen Z, Hu C G, Wang Z L. All-in-one shape-adaptive self-charging powerpackage for wearable electronics. ACS Nano, 2016, 10(11): 10580–10588

    Article  CAS  PubMed  Google Scholar 

  103. Li S M, Peng W B, Wang J, Lin L, Zi Y L, Zhang G, Wang Z L. All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy. ACS Nano, 2016, 10(8): 7973–7981

    Article  CAS  PubMed  Google Scholar 

  104. Jiang Q, Wu C, Wang Z, Wang A C, He J H, Wang Z L. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy, 2018, 45: 266–272

    Article  CAS  Google Scholar 

  105. Wang X F, Yin Y J, Yi F, Dai K R, Niu S M, Han Y Z, Zhang Y, You Z. Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics. Nano Energy, 2017, 39: 429–436

    Article  CAS  Google Scholar 

  106. Yi F, Wang J, Wang X F, Niu S M, Li S M, Liao Q L, Xu Y L, You Z, Zhang Y, Wang Z L. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics. ACS Nano, 2016, 10(7): 6519–6525

    Article  CAS  PubMed  Google Scholar 

  107. Zhou C J, Yang Y Q, Sun N, Wen Z, Cheng P, Xie X K, Shao H Y, Shen Q Q, Chen X P, Liu Y N. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Research, 2018, 11(8): 4313–4322

    Article  CAS  Google Scholar 

  108. Balducci A, Dugas R, Taberna P L, Simon P, Plée D, Mastragostino M, Passerini S. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 2007, 165(2): 922–927

    Article  CAS  Google Scholar 

  109. Jung S, Lee J, Hyeon T, Lee M, Kim D H. Fabric-based integrated energy devices for wearable activity monitors. Advanced Materials, 2014, 26(36): 6329–6334

    Article  CAS  PubMed  Google Scholar 

  110. Zhang Q, Liang Q J, Liao Q L, Yi F, Zheng X, Ma M Y, Gao F F, Zhang Y. Service behavior of multifunctional triboelectric nanogenerators. Advanced Materials, 2017, 29(17): 1606703

    Article  CAS  Google Scholar 

  111. Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano, 2017, 11(2): 2066–2074

    Article  CAS  PubMed  Google Scholar 

  112. Wen Z, Yeh M H, Guo H Y, Wang J, Zi Y L, Xu W D, Deng J N, Zhu L, Wang X, Hu C G. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2(10): e1600097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Seung W, Gupta M K, Lee K Y, Shin K S, Lee J H, Kim T Y, Kim S, Lin J, Kim J H, Kim S W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 2015, 9(4): 3501–3509

    Article  CAS  PubMed  Google Scholar 

  114. Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano, 2017, 11(9): 9490–9499

    Article  CAS  PubMed  Google Scholar 

  115. Song Y, Zhang J X, Guo H, Chen X X, Su Z M, Chen H T, Cheng X L, Zhang H X. All-fabric-based wearable self-charging power cloth. Applied Physics Letters, 2017, 111(7): 073901

    Article  CAS  Google Scholar 

  116. Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1: 16138

    Article  CAS  Google Scholar 

  117. Xia K, Zhu Z, Fu J, Chi Y, Xu Z. Multifunctional conductive copper tape-based triboelectric nanogenerator and as a self-powered humidity sensor. IEEE Transactions on Electron Devices, 2019, 66(6): 2741–2745

    Article  CAS  Google Scholar 

  118. Ren Z W, Nie J H, Shao J J, Lai Q S, Wang L F, Chen J, Chen X Y, Wang Z L. Fully elastic and metal-free tactile sensors for detecting both normal and tangential forces based on triboelectric nanogenerators. Advanced Functional Materials, 2018, 28(31): 1802989

    Article  CAS  Google Scholar 

  119. Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang Z L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy, 2019, 59: 302–310

    Article  CAS  Google Scholar 

  120. Zou J, Zhang M, Huang J, Bian J, Jie Y, Willander M, Cao X, Wang N, Wang Z L. Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Advanced Energy Materials, 2018, 8(10): 1702671

    Article  CAS  Google Scholar 

  121. Cui X N, Zhang C, Liu W H, Zhang W, Zhang J H, Li X, Geng L, Wang X L. Pulse sensor based on single-electrode triboelectric nanogenerator. Sensors and Actuators. A, Physical, 2018, 280: 326–331

    CAS  Google Scholar 

  122. Maharjan P, Toyabur R M, Park J Y. A human locomotion inspired hybrid nanogenerator for wrist-wearable electronic device and sensor applications. Nano Energy, 2018, 46: 383–395

    Article  CAS  Google Scholar 

  123. Raza W, Ali F, Raza N, Luo Y, Kin K H, Yang J, Kumar S, Mehmood A, Kwon E E. Recent advancements in supercapacitor technology. Nano Energy, 2018, 52: 441–473

    Article  CAS  Google Scholar 

  124. Gao Y, Xiang H F, Wang X X, Yan K, Liu Q, Li X, Liu R Q, Yu M, Long Y Z. A portable solution blow spinning device for minimally invasive surgery hemostasis. Chemical Engineering Journal, 2020, 387: 124052

    Article  CAS  Google Scholar 

  125. Kumar K S, Choudhary N, Jung Y, Thomas J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Letters, 2018, 3(2): 482–495

    Article  CAS  Google Scholar 

  126. Chen J, Guo H Y, Pu X J, Wang X, Xi Y, Hu C G. Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy, 2018, 50: 536–543

    Article  CAS  Google Scholar 

  127. Hu Y, Zhang Y, Xu C, Zhu G, Wang Z L. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Letters, 2010, 10(12): 5025–5031

    Article  CAS  PubMed  Google Scholar 

  128. Hu Y, Cheng H, Zhao F, Chen N, Jiang L, Feng Z, Qu L. All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6(12): 6448–6451

    Article  CAS  PubMed  Google Scholar 

  129. Ma M, Kang Z, Liao Q, Zhang Q, Gao F, Zhao X, Zhang Z, Zhang Y. Development, applications and future directions of triboelectric nanogenerators. Nano Research, 2018, 11(6): 2951–2969

    Article  CAS  Google Scholar 

  130. Wu J, Yin K, Li M, Wu Z, Xiao S, Wang H, He J. Under-oil self-driven and directional transport of water on femtosecond laser-processed superhydrophilic geometry-gradient structure. Nanoscale, 2020, 12(6): 4077–4084

    Article  CAS  PubMed  Google Scholar 

  131. Muhammad A, Du H L, Javed M S, Asghari M, Iqra A, Shahid H, Ma W L, Ran H P. Fabrication, structure and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceramics International, 2020, 46(2): 2238–2246

    Article  CAS  Google Scholar 

  132. Deng J, Kuang X, Liu R, Ding W, Wang A C, Lai Y C, Dong K, Wen Z, Wang Y, Wang Z L. Vitrimer elastomer-based jigsaw puzzle-like healable triboelectric nanogenerator for self-powered wearable electronics. Advanced Materials, 2018, 30(14): 1705918

    Article  CAS  Google Scholar 

  133. Wang J, Li S M, Yi F, Zi Y L, Lin J, Wang X F, Xu Y L, Wang Z L. Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7(1): 1–8

    Google Scholar 

  134. Liu W, Li H, Zhu H, Xu P. Properties of a steel slag-permeable asphalt mixture and the reaction of the steel slag-asphalt interface. Materials, 2019, 12(21): 3603

    Article  CAS  PubMed Central  Google Scholar 

  135. Pan C, Fang Y, Wu H, Ahmad M, Luo Z, Li Q, Xie J, Yan X, Wu L, Wang Z L. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Advanced Materials, 2010, 22(47): 5388–5392

    Article  CAS  PubMed  Google Scholar 

  136. Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3(20): eaat2516

    Article  PubMed  Google Scholar 

  137. Duan C, Yu Y, Yang P, Zhang X, Li F, Li L, Xi H. Engineering new defects in MIL-100 (Fe) via a mixed-ligand approach to effect enhanced volatile organic compounds adsorption capacity. Industrial & Engineering Chemistry Research, 2020, 59(2): 774–782

    Article  CAS  Google Scholar 

  138. Tang S F, Wang Z T, Yuan D L, Zhang Y T, Qi J B, Rao Y D, Lu G, Li B, Wang K, Yin K. Enhanced photocatalytic performance of BiVO4 for degradation of methylene blue under LED visible light irradiation assisted by peroxymonosulfate. International Journal of Electrochemical Science, 2020, 15(3): 2470–2480

    Article  CAS  Google Scholar 

  139. Liu D, Yin X, Guo H Y, Zhou L L, Li X Y, Zhang C L, Wang J, Wang Z L. A constant current triboelectric nanogenerator arising from electrostatic breakdown. Science Advances, 2019, 5(4): eaav6437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li X Y, Yin X, Zhao Z H, Zhou L L, Liu D, Zhang C L, Zhang C G, Zhang W, Li S X, Wang J. Long-lifetime triboelectric nanogen-erator operated in conjunction modes and low crest factor. Advanced Energy Materials, 2020, 10(7): 1903024

    Article  CAS  Google Scholar 

  141. Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano, 2013, 7(11): 9533–9557

    Article  CAS  PubMed  Google Scholar 

  142. Wang Z L. Entropy theory of distributed energy for internet of things. Nano Energy, 2019, 58: 669–672

    Article  CAS  Google Scholar 

  143. Wang Z L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discussions, 2014, 176: 447–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of Shandong Province Higher Educational Science and Technology Program (No. J18KA316) and Liaoning Science and Technology Plan (No. 20180550573), the Shandong Science and Technology Development Plan (No. 2019GGX104019) and Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515110706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, Y., Kang, L. et al. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Front. Chem. Sci. Eng. 15, 238–250 (2021). https://doi.org/10.1007/s11705-020-1956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1956-3

Keywords

Navigation