Skip to main content

Advertisement

Log in

Role of bone 1stem cell–seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Osteoconductive biomaterials were used to find the most reliable materials in bone healing. Our focus was on the bone healing capacity of the stem cell–loaded and unloaded PLA/PCL/HA scaffolds. The 3D scaffold of PLA/PCL/HA was characterized by scanning electron microscopy (SEM), rheology, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. Bone marrow stem cells (BMSCs) have multipotential differentiation into osteoblasts. Forty Wistar male rats were used to organize four experimental groups: control, autograft, scaffold, and BMSCs-loaded scaffold groups. qRT-PCR showed that the BMSCs-loaded scaffold had a higher expression level of CD31 and osteogenic markers compared with the control group (P < 0.05). Radiology and computed tomography (CT) scan evaluations showed significant improvement in the BMSCs-loaded scaffold compared with the control group (P < 0.001). Biomechanical estimation demonstrated significantly higher stress (P < 0.01), stiffness (P < 0.001), and ultimate load (P < 0.01) in the autograft and BMSCs-loaded scaffold groups compared with the untreated group and higher strain was seen in the control group than the other groups (P < 0.01). Histomorphometric and immunohistochemical (IHC) investigations showed significantly improved regeneration scores in the autograft and BMSCs-loaded scaffold groups compared with the control group (P < 0.05). Also, there was a significant difference between the scaffold and control groups in all tests (P < 0.05). The results depicted that our novel approach will allow to develop PLA/PCL/HA 3D scaffold in bone healing via BMSC loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alidadi S, Oryan A, Bigham-Sadegh A, Moshiri A (2017) Comparative study on the healing potential of chitosan, polymethylmethacrylateand demineralized bone matrix in radial bone defects of rat. Carbohydr Polym 166:236–248

    CAS  PubMed  Google Scholar 

  • Babczyk P, Conzendorf C, Klose J, Schulze M, Harre K, Tobiasch E (2014) Stem cells on biomaterials for synthetic grafts to promote vascular healing. J Clin Med 3:39–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassi A, Gough J, Zakikhani M, Downes S (2011) The chemical and physical properties of poly(ε-caprolactone) scaffolds functionalised with poly(vinyl phosphonic acid-co-acrylic acid). J Tissue Eng 2011:615328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S, Muzzarelli RA (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 98:665–676

    CAS  PubMed  Google Scholar 

  • Chatterjee K, Lin-Gibson S, Wallace WE, Parekh SH, Lee YJ, Cicerone MT, Young MF, Simon CG (2010) The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31:5051–5062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Z, Wright LD, Guzzo R, Freeman JW, Drissi DH, Nair LS (2014) Poly(d-lactide)/poly(caprolactone) nanofiber-thermogelling chitosan gel composite scaffolds for osteochondral tissue regeneration in a rat model. J Bioact Compat Polym 28:115–125

    Google Scholar 

  • Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4:1742–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eftekhari H, Jahandideh A, Asghari A, Akbarzadeh A, Hesaraki S (2018) Histopathological evaluation of polycaprolactone nanocomposite compared with tricalcium phosphate in bone healing. J Vet Res 62:385–394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshraghi S, Das S (2012) Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone: hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater 8:3138–3143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Li P, Lu X, Fang L, Lü X, Ren F (2019) A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater 1(88):503–513

    Google Scholar 

  • Fu X, Liu G, Halim A, Ju Y, Luo Q, Song G (2019) Mesenchymal stem cell migration and tissue repair. Cells 8:784–800

    CAS  PubMed Central  Google Scholar 

  • Götz W, Tobiasch E, Witzleben S, Schulze M (2019) Effects of silicon compounds on biomineralization, osteogenesis, and hard tissue formation. Pharmaceutics 11:117–143

    PubMed Central  Google Scholar 

  • Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, Blahnová V, Lukášová V, Bartoš M, Neèas A, Hošek J (2017) Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11:31–51

    PubMed  PubMed Central  Google Scholar 

  • Guntillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16

    Google Scholar 

  • Harada N, Watanabe Y, Sato K, Abe S, Yamanaka K, Sakai Y, Kaneko T, Matsushita T (2014) Bone regeneration in a massive rat femur defect through endochondral ossification achieved with chondrogenically differentiated MSCs in a degradable scaffold. Biomaterials 35(27):7800–7810

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Nishida Y, Takahashi S, Nakamura H, Mera H, Kashiwa K, Yoshiya S, Inagaki Y, Uematsu K, Tanaka Y, Asada S, Akagi M, Fukuda K, Hosokawa Y, Myoui A, Kamei N, Ishikawa M, Adachi N, Ochi M, Wakitani S (2019) Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: a multicenter prospective randomized control clinical trial. Regen Ther 11:106–113

    PubMed  PubMed Central  Google Scholar 

  • Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T (2019) Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater Sci Eng C 104:1099960

    Google Scholar 

  • Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions-a 21st century perspective. Bone Res 1(3):216–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Ye C, Chen M, Li W, Gao X, He R, Zheng Q, Zhang W (2019) Bergenin activates SIRT1 as a novel therapeutic agent for osteogenesis of bone mesenchymal stem cells. Front Pharmacol 10:618–629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hribar KC, Soman P, Warner J, Chung P, Chen S (2014) Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14:268–275

    CAS  PubMed  Google Scholar 

  • Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen A, Reolfing HD, Le DQS, Kristiansen AA, Nygaard JV, Hokland LB (2013) Surface-modified functionalized polycaprolactone scaffolds for bone repair: in vitro and in vivo experiments. J Biomed Mater Res 102:2993–3003

    Google Scholar 

  • Kamath MS, Ahmed SSJ, Dhanasekaran M, Santosh S (2014) Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomedicine 9:183–195

    PubMed  Google Scholar 

  • Kumar P, Dehiya BS, Sindhu A (2018) Bioceramics for hard tissue engineering applications: a review. Int J Appl Eng Res 13(5):2744–2752

    Google Scholar 

  • Leonga KF, Chuaa CK, Sudarmadjia N, Yeonga WY (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152

    Google Scholar 

  • Lima Cavalcanti JH, Matos PC, Depes de Gouvea CV, Carvalho W, Calvo-Guirado JL, Aragoneses JM, Perez-Diaz L, Gehrke SA (2019) In vitro assessment of the functional dynamics of titanium with surface coating of hydroxyapatite nanoparticles. Materials 12(5):840–853

    PubMed Central  Google Scholar 

  • Liuac Y, Ming L, Luo H, Liu W, Zhang Y, Liu H, Jin Y (2013) Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 34(38):9998–10006

    Google Scholar 

  • Lopes MS, Jardini AL, Maciel R (2012) Poly(lactic acid) production for tissue engineering applications. Proc Eng 42:1402–1413

    Google Scholar 

  • Luo CH, Fang H, Zhou M, Li J, Zhang X, Liu SH, Zhou CH, Hou J, He H, Sun J, Wang ZH (2019) Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering. Theranostics 9:4663–4677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marins NH, Lee BEJ, Silva RM, Raghavan A, Villarreal-Carre NL, Grandfield K (2019) Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids Surf B: Biointerfaces 182:110386

    CAS  PubMed  Google Scholar 

  • Misra SK, Ansari T, Mohn D, Valappil SP, Brunner TJ, Stark WJ, Roy I, Knowles JC, Sibbons PD, Jones EV, Boccaccini AR, Salih V (2009) Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. J R Soc Interface 7:453–465

    PubMed  PubMed Central  Google Scholar 

  • Mitsak AG, Kemppainen JM, Harris MT, Hollister ST (2011) Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A 17:1831–1839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moghadam MZ, Hassanajili S, Esmaeilzadeh F, Ayatollahi M, Ahmadi M (2017) Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO 2 gas foaming method. J Mech Behav Biomed Mater 69:115–127

    CAS  PubMed  Google Scholar 

  • Mondal D, Griffith M, Venkatraman SS (2016) Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater 65:255–265

    CAS  Google Scholar 

  • Moshiri A, Oryan A, Meimandi-Parizi A (2013) Role of tissue-engineered artificial tendon in healing of a large achilles tendon defect model in rabbits. Coll Surg 217:421–441

    Google Scholar 

  • Mou ZL, Zhao LJ, Zhang QA, Zhang J, Zhang ZQ (2011) Preparation of porous PLGA/HA/collagen scaffolds with supercritical CO2 and application in osteoblast cell culture. J Supercrit Fluids 58(3):398–406

    CAS  Google Scholar 

  • Oryan A, Alidadi S (2018) Reconstruction of radial bone defect in rat by calcium silicate biomaterials. Life Sci 201:45–53

    CAS  PubMed  Google Scholar 

  • Oryan A, Meimandi-Parizi A, Shafiei-Sarvestani Z, Bigham AS (2012) Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank 13:639–651

    CAS  PubMed  Google Scholar 

  • Oryan A, Alidadi S, Moshiri A, Maffulli N (2014) Bone regenerative medicine:classic options, novel strategies, and future directions. J Orthop Surg Res 9:18

    PubMed  PubMed Central  Google Scholar 

  • Oryan A, Alidadi S, Bigham-Sadegh A, Meimandi-Parizi A (2017a) Chitosan/gelatin/platelet gel enriched by a combination ofhydroxyapatite and beta-tricalcium phosphate in healing of a radialbone defect model in rat. Int J Biol Macromol 101:630–637

    CAS  PubMed  Google Scholar 

  • Oryan A, Kamali A, Moshiri A, Baghaban-Eslaminejad M (2017b) Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence? Cells Tissues Organs 204(2):59–83

    CAS  PubMed  Google Scholar 

  • Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A, Kamali A (2017c) Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. Corel 254:65–77

    CAS  Google Scholar 

  • Oryan A, Baghaban-Eslaminejad M, Kamali A, Hosseini S, Sayahpour FA, Baharvand H (2018) Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J Biomed Mater Res Part B 107(1):50–64

    Google Scholar 

  • Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982

    CAS  Google Scholar 

  • Ottensmeyer P, Witzler M, Schulze M, Tobiasch E (2018) Small molecules enhance scaffold-based bone grafts via purinergic receptor signaling in stem cells. Int J Mol 19:3601–3630

    Google Scholar 

  • Papadimitropoulos A, Riboldi SA, Tonnarelli B, Piccinini E, Woodruff MA, Hutmacher DW, Martin I (2013) A collagen network phase improves cell seeding of open pore structure scaffolds under perfusion. J Tissue Eng Regen Med 7:183–191

    CAS  PubMed  Google Scholar 

  • Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R (2010) Protein growth factors loaded highly porous chitosan scaffold: a comparisonof bone healing properties. Chem Eng J 158:353–361

    CAS  Google Scholar 

  • Pilia M, Guda T, Appleford M (2013) Development of composite scaffolds for load-bearing segmental bone defects. Biomed Res Int 2013:458253

    PubMed  PubMed Central  Google Scholar 

  • Pizzicannella J, Diomede F, Gugliandolo A, Chiricosta L, Bramanti P, Merciaro I, Orsini T, Mazzon E, Trubiani O (2019) 3D printing PLA/gingival stem cells/EVs upregulate miR-2861 and -210 during osteoangiogenesis commitment. Int J Mol Sci 20:3256–3274

    CAS  PubMed Central  Google Scholar 

  • Ramtani S (2004) Mechanical modeling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation. J Biomech 37(11):1709–1718

    CAS  PubMed  Google Scholar 

  • Raucci MG, Guarino V, Ambrosio L (2010) Effect of calcium precursors and pH on the precipitation of carbonated hydroxyapatite. Compos Sci Technol 70:1861–1868

    CAS  Google Scholar 

  • Roohani-Esfahani S, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H (2011) Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater 7(3):1307–1318

    CAS  PubMed  Google Scholar 

  • Schumacher M, Uhl F, Detsch R, Deisinger U, Ziegler G (2010) Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J Mater Sci Mater Med 21:3039–3048

    CAS  PubMed  Google Scholar 

  • Shahrezaee M, Raz M, Shishehbor S, Moztarzadeh F, Baghbani F, Sadeghi A, Bajelani K, Tondnevis F (2018a) Synthesis of magnesium doped amorphous calciumphosphate as a bioceramic for biomedical application: invitro study. Silicon 10:1171–1179

    CAS  Google Scholar 

  • Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B (2018b) In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of criticalsized bone defects. Nanomed Nanotechnol Biol Med 14:2061–2073

    CAS  Google Scholar 

  • Shahrezaie M, Moshiri A, Shekarchi B, Oryan A, Maffulli N, Parvizi J (2017) Effectiveness of tissue engineered three dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value. J Tissue Eng Regen Med 12(4):936–960

    PubMed  Google Scholar 

  • Shahsavari-Pour S, Aliabadi E, Latifi M, Zareifard N, Namavar MR, Talaei-Khozani T (2018) Evaluation of the possible synergic regenerative effects of platelet-rich plasma and hydroxyapatite/zirconia in the rabbit mandible defect model. Iran J Med Sci 43:633–644

    PubMed  Google Scholar 

  • Shimojo AAM, Perez AGM, Galdames SEM, Brissac ICDS, Santana MHA (2015) Performance of PRP associated with porous chitosan as acomposite scaffold for regenerative medicine. Sci World J 2015:396131

    Google Scholar 

  • Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S (2018) PCL based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 60(7):506–532

    CAS  PubMed  Google Scholar 

  • Sivashankari P, Prabaharan M (2016) Prospects of chitosan-based scaffolds forgrowth factor release in tissue engineering. Int J Biol Macromol 93:1382–1389

    CAS  PubMed  Google Scholar 

  • Solgi S, Shahrezaee M, Zamanian A, Jafarzadeh kasha TS, Raz M, Khoshroo K, Tahriri M (2015) Sol-gel synthesis and characterization of SiO2-Cao-P2O5-SrO bioactive glass: in vitro study. Key Eng Mater 631:30–35

    Google Scholar 

  • Sukanya VS, Mohanan PV (2018) Degradation of poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells. Colloids Surf B: Biointerfaces 163:107–118

    CAS  Google Scholar 

  • Torres AL, Gaspar VM, Serra IR, Diogo GS, Fradique R, Silva AP, Correia IJ (2013) Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mat Sci Eng C Mater 33(7):4460–4469

    CAS  Google Scholar 

  • Tsai TL, Li WJ (2017) Identification of bone marrow-derived soluble factors regulating human mesenchymal stem cells for bone regeneration. Stem Cell Rep J 8:387–400

    CAS  Google Scholar 

  • Vergroesen PPA, Kroeze RJ, Helder MN, Smit TH (2011) The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromol Biosci 11:722–730

    CAS  PubMed  Google Scholar 

  • Wang J, Wu D, Zhang Z, Li J, Shen Y, Wang Z, Li Y, Zhang ZY, Sun J (2015) Biomimetically ornamented rapid prototyping fabrication of an apatite-collagen-polycaprolactone composite construct with nano-micro-macro hierarchical structure for large bone defect treatment. ACS Appl Mater Interfaces 7:26244–26256

    CAS  PubMed  Google Scholar 

  • Weiab J-Q, Xue-Hui Y, Wei-Wei Z, Tuan-Feng L, Hua Z, Deng ZXL (2017) Enhanced critical-sized bone defect repair efficiency by combining deproteinized antler cancellous bone and autologous BMSCs. Chin Chem Lett 28(4):845–850

    Google Scholar 

  • Witzler M, Ottensmeyer P, Gericke M, Heinz T, Tobiasch E, Schulze M (2019) Non-cytotoxic agarose/hydroxyapatite composite scaffolds for drug release. Int J Mol Sci 20:3565–3583

    CAS  PubMed Central  Google Scholar 

  • Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    CAS  Google Scholar 

  • Yu W, Li R, Long J, Chen P, Hou A, Li L, Sun X, Zheng G, Meng H, Wang Y, Wang A, Sui X, Guo Q, Tao S, Peng J, Qin L, Lu S, Lai Y (2019) Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. J Orthop Translat 16:62–70

    PubMed  Google Scholar 

  • Yun HS, Park JW, Kim SH, Kim YJ, Jang JH (2010) Effect of the pore structure of bioactive glass balls on biocompatibility in vitro and in vivo. Acta Biomater 7:2651–2660

    Google Scholar 

  • Zhang ZZ, Zhang HZ, Zhang ZY (2019a) 3D printed poly(ε-caprolactone) scaffolds function with simvastatin loaded poly(lactic.Co.glycolic acid) microspheres to repair load bearing segmental bone defects. Exp Ther Med 17:79–90

    PubMed  Google Scholar 

  • Zhang Y, Chen H, Zhang T, Zan Y, Ni T, Cao Y, Wang J, Liu M, Pei R (2019b) Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration. Mater Sci Eng C 96:841–849

    CAS  Google Scholar 

Download references

Funding

This study was supported by the Veterinary School, Shiraz University, Shiraz, Iran. The authors would also like to thank the INSF (grant number 96006039) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Oryan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal rights statement

This study was approved by the local Ethics Committee of “Regulations in using animals in scientific procedures” in the School of Veterinary Medicine of our University and all rats gained humane care that followed the Guide for Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication No. 85-23, revised 1985).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahvieh, S., Oryan, A., Hassanajili, S. et al. Role of bone 1stem cell–seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell Tissue Res 383, 735–750 (2021). https://doi.org/10.1007/s00441-020-03284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03284-9

Keywords

Navigation