Skip to main content
Log in

Analytical solution of deflection of multi-cracked beams on elastic foundations under arbitrary boundary conditions using a diffused stiffness reduction crack model

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Crack can significantly affect the performance of structures and is one of the crucial indicators of damage in structural health monitoring. In this paper, the deflection behaviors of Euler–Bernoulli beams with arbitrary open edge cracks under arbitrary elastic boundary conditions are investigated. A continuous diffused stiffness reduction crack model is implemented to simulate the cracks in beams, which can incorporate multiple cracks and consider the stiffness reduction effect in the vicinity of a crack. With the proposed diffused stiffness reduction model, the fourth-order differential equation governing the deflection behavior of the multi-cracked Euler–Bernoulli beam is constructed. The powerful variational iteration method is applied to obtain the analytical solution of the multi-cracked beams on elastic foundations. Five shape functions are introduced, based on which the deflection of the multi-cracked beam is proposed. Both the solutions corresponding to the general elastic boundary conditions and the conventional boundary conditions are presented explicitly. The deflection solution is benchmarked and verified against the literature, and encouraging agreements are obtained. Parametric studies are carried out to investigate the influences of crack position, crack ratio, stiffness of the elastic foundation, and boundary conditions on the deflection of the cracked beams. The proposed crack model and the deflection solution overcome some of the limitations in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(d_{ci}\) :

Depth of the ith crack

\(E_{0}\) :

Young’s modulus

E(x)I(x):

Variable flexural stiffness

\(E_{0} I_{0}\) :

Constant flexural stiffness

h :

Height of beam

\(k_{f}\) :

Stiffness of the foundation

\(k_{0r}, k_{Lr}\) :

Rotational spring stiffness

\(k_{0t}, k_{Lt}\) :

Translational spring stiffness

\(K_{0{{r}}}, K_{1{{r}}}\) :

Non-dimensional rotational spring stiffness

\(K_{0{{t}}}, K_{1{{t}}}\) :

Non-dimensional translational spring stiffness

L :

Length of beam

q :

Uniform load

Q :

Shear force

\(r_{c} (x), r_{c} (\xi )\) :

Stiffness reduction function

\({{{r}}}_{{{ci}}}\) :

The crack ratio of the ith crack

\(S_{i} (\xi ) ({i=0,1,2,3 \, {\text {and}} \, 4})\) :

Shape functions of intact beam

x :

Coordinate along the beam

\(x_{ci}\) :

Location of the ith crack

y(x):

Deflection

\(\beta \) :

Non-dimensional stiffness of the elastic foundation

\(\gamma _{0}\) :

Non-dimensional uniform load

\(\varepsilon _{ci}\) :

Non-dimensional nominal width of the ith crack

\(\eta _{ci}\) :

Stiffness reduction factor

\(\lambda ({\tau ;\xi ,\beta })\) :

Generalized Lagrange’s multiplier

\(\xi \) :

Non-dimensional coordinate along the beam

\(\xi _{ci}\) :

Non-dimensional location of the ith crack

\(\sigma _{ci}\) :

Nominal width of the ith crack

\(\phi (\xi )\) :

Non-dimensional deflection

\(\varPsi _{i} (\xi ) ({i=0,1,2,3 \, {\text {and}} \, 4})\) :

Shape functions of cracked beam

References

  1. Zhao, X.: Automated rotational-and scaling-invariant image-based crack width monitoring with sub-millimeter accuracy and self-numbering label. Asian J. Civ. Eng. 21(4), 741–749 (2020)

    Google Scholar 

  2. Winkler, E.: Die Lehre von der elasticitaet und festigkeit. Dominicus, Prague (1868)

    Google Scholar 

  3. Kurrer, K.-E.: The history of the theory of structures: from arch analysis to computational mechanics. Int. J. Space Struct. 23(3), 193–197 (2008)

    Google Scholar 

  4. Friswell, M.I., Penny, J.E.: Crack modeling for structural health monitoring. Struct. Health Monit. 1(2), 139–148 (2002)

    Google Scholar 

  5. Christides, S., Barr, A.: One-dimensional theory of cracked Bernoulli–Euler beams. IJMS 26(11–12), 639–648 (1984)

    Google Scholar 

  6. Wahab, M.A., De Roeck, G., Peeters, B.: Parameterization of damage in reinforced concrete structures using model updating. J. Sound Vib. 228(4), 717–730 (1999)

    Google Scholar 

  7. Sinha, J.K., Friswell, M., Edwards, S.: Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 251(1), 13–38 (2002)

    Google Scholar 

  8. Mahmoud, M., Zaid, M.A.: Dynamic response of a beam with a crack subject to a moving mass. J. Sound Vib. 256(4), 591–603 (2002)

    Google Scholar 

  9. Ariaei, A., Ziaei-Rad, S., Ghayour, M.: Vibration analysis of beams with open and breathing cracks subjected to moving masses. J. Sound Vib. 326(3–5), 709–724 (2009)

    Google Scholar 

  10. Jaksic, V., O’Connor, A., Pakrashi, V.: Damage detection and calibration from beam-moving oscillator interaction employing surface roughness. J. Sound Vib. 333(17), 3917–3930 (2014)

    Google Scholar 

  11. Zhao, X.: Free vibration analysis of cracked Euler–Bernoulli beam by Laplace transformation considering stiffness reduction. Rom. J. Acoust. Vib. 16(2), 166–173 (2019)

    Google Scholar 

  12. Huang, T., Chaves-Vargas, M., Yang, J., Schröder, K.-U.: A baseline-free structural damage indicator based on node displacement of structural mode shapes. J. Sound Vib. 433, 366–384 (2018)

    Google Scholar 

  13. Liebowitz, H., Vanderveldt, H., Harris, D.: Carrying capacity of notched columns. IJSS 3(4), 489–500 (1967)

    Google Scholar 

  14. Ostachowicz, W., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150(2), 191–201 (1991)

    Google Scholar 

  15. Fu, C., Wang, Y., Tong, D.: Stiffness estimation of cracked beams based on nonlinear stress distributions near the crack. Math. Probl. Eng. (2018). https://doi.org/10.1155/2018/5987973

    Article  Google Scholar 

  16. Chouiyakh, H., Azrar, L., Akourri, O., Alnefaie, K.: Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load, vol 83. In: Csndd 2016—International Conference On Structural Nonlinear Dynamics and Diagnosis. E D P Sciences. https://doi.org/10.1051/matecconf/20168306003 (2016)

  17. Yavari, A., Sarkani, S., Reddy, J.: On nonuniform Euler–Bernoulli and Timoshenko beams with jump discontinuities: application of distribution theory. IJSS 38(46–47), 8389–8406 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Yavari, A., Sarkani, S., Moyer Jr., E.T.: On applications of generalized functions to beam bending problems. IJSS 37(40), 5675–5705 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Yavari, A., Sarkani, S.: On applications of generalized functions to the analysis of Euler–Bernoulli beam–columns with jump discontinuities. IJMS 43(6), 1543–1562 (2001)

    MATH  Google Scholar 

  20. Caddemi, S., Calio, I.: Exact solution of the multi-cracked Euler–Bernoulli column. IJSS 45(5), 1332–1351 (2008)

    MATH  Google Scholar 

  21. Caddemi, S., Calio, I.: Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks. J. Sound Vib. 327(3–5), 473–489 (2009)

    Google Scholar 

  22. Caddemi, S., Caliò, I., Marletta, M.: The non-linear dynamic response of the Euler–Bernoulli beam with an arbitrary number of switching cracks. Int. J. Nonlinear Mech. 45(7), 714–726 (2010)

    Google Scholar 

  23. Caddemi, S., Caliò, I.: The influence of the axial force on the vibration of the Euler–Bernoulli beam with an arbitrary number of cracks. Arch. Appl. Mech. 82(6), 827–839 (2012)

    MATH  Google Scholar 

  24. Caddemi, S., Caliò, I.: The exact explicit dynamic stiffness matrix of multi-cracked Euler–Bernoulli beam and applications to damaged frame structures. J. Sound Vib. 332(12), 3049–3063 (2013)

    Google Scholar 

  25. Caddemi, S., Caliò, I., Cannizzaro, F.: Influence of an elastic end support on the dynamic stability of Beck’s column with multiple weak sections. Int. J. Nonlinear Mech. 69, 14–28 (2015)

    Google Scholar 

  26. Caddemi, S., Calio, I., Cannizzaro, F.: The Dynamic Stiffness Matrix (DSM) of Axially Loaded Multi-cracked Frames, vol. 84. Mechanics Research Communications. Pergamon-Elsevier Science Ltd. https://doi.org/10.1016/j.mechrescom.2017.06.012 (2017)

  27. Caddemi, S., Calio, I., Cannizzaro, F., Morassi, A.: A Procedure for the Identification of Multiple Cracks on Beams and Frames by Static Measurements, vol. 25. Structural Control & Health Monitoring, vol. 8. John Wiley & Sons Ltd. https://doi.org/10.1002/stc.2194 (2018)

  28. Biondi, B., Caddemi, S.: Closed form solutions of Euler–Bernoulli beams with singularities. IJSS 42(9–10), 3027–3044 (2005)

    MATH  Google Scholar 

  29. Berto, F., Lazzarin, P., Afshar, R.: Simple new expressions for the notch stress intensity factors in an array of narrow V-notches under tension. IJFr 176(2), 237–244 (2012)

    Google Scholar 

  30. Lazzarin, P., Afshar, R., Berto, F.: Notch stress intensity factors of flat plates with periodic sharp notches by using the strain energy density. ThAFM 60(1), 38–50 (2012)

    Google Scholar 

  31. Afshar, R., Berto, F.: Some recent developments on the application of the strain energy density to shallow threaded plates with sharp notches. Struct. Durab. Health Monit. 9(2), 167 (2013)

    Google Scholar 

  32. Afshar, R., Berto, F.: Finite element analysis of three-dimensional periodic notched plates. Struct. Durab. Health Monit. 9(4), 349 (2013)

    Google Scholar 

  33. Afshar, R., Berto, F., Lazzarin, P., Pook, L.P.: Analytical expressions for the notch stress intensity factors of periodic V-notches under tension by using the strain energy density approach. J. Strain Anal. Eng. Des. 48(5), 291–305 (2013)

    Google Scholar 

  34. Amini, A., Afshar, R., Berto, F.: Effects of geometrical parameters on the stress field of three-dimensional plates weakened by periodic notches. Strength Mater. 46(3), 391–403 (2014)

    Google Scholar 

  35. Berto, F., Afshar, R.H.: Inclined hole under different loading conditions: a review of recent results. Strength Mater. 48(5), 668–676 (2016)

    Google Scholar 

  36. Viola, E., Nobile, L., Federici, L.: Formulation of cracked beam element for structural analysis. J. Eng. Mech. 128(2), 220–230 (2002)

    Google Scholar 

  37. Mehrjoo, M., Khaji, N., Ghafory-Ashtiany, M.: New Timoshenko-cracked beam element and crack detection in beam-like structures using genetic algorithm. Inverse Probl. Sci. Eng. 22(3), 359–382 (2014)

    Google Scholar 

  38. Hou, C., Lu, Y.: Identification of cracks in thick beams with a cracked beam element model. J. Sound Vib. 385, 104–124 (2016)

    Google Scholar 

  39. Alijani, A., Abadi, M.M., Darvizeh, A., Abadi, M.K.: Theoretical Approaches for Bending Analysis of Founded Euler–Bernoulli Cracked Beams, vol. 88. Archive Of Applied Mechanics, vol. 6. Springer. https://doi.org/10.1007/s00419-018-1347-0 (2018)

  40. Zheng, T., Ji, T.: An approximate method for determining the static deflection and natural frequency of a cracked beam. J. Sound Vib. 331(11), 2654–2670 (2012)

    Google Scholar 

  41. Kukla, S.: The Green function method in frequency analysis of a beam with intermediate elastic supports. J. Sound Vib. 149(1), 154–159 (1991)

    Google Scholar 

  42. Chang, P., Zhao, X.: Exact solution of vibrations of beams with arbitrary translational supports using shape function method. Asian J. Civ. Eng. https://doi.org/10.1007/s42107-020-00275-7 (2020)

  43. He, J.: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2(4), 230–235 (1997)

    Google Scholar 

  44. He, J.-H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. CMAME 167(1–2), 57–68 (1998)

    MathSciNet  MATH  Google Scholar 

  45. He, J.-H.: Approximate solution of nonlinear differential equations with convolution product nonlinearities. CMAME 167(1–2), 69–73 (1998)

    MATH  Google Scholar 

  46. He, J.-H.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 34(4), 699–708 (1999)

    MATH  Google Scholar 

  47. He, J.-H.: Homotopy perturbation technique. CMAME 178(3–4), 257–262 (1999)

    MathSciNet  MATH  Google Scholar 

  48. He, J.-H.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114(2–3), 115–123 (2000)

    MathSciNet  MATH  Google Scholar 

  49. He, J.-H.: Some asymptotic methods for strongly nonlinear equations. IJMPB 20(10), 1141–1199 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Rončević, G.Š., Rončević, B., Skoblar, A., Žigulić, R.: Closed form solutions for frequency equation and mode shapes of elastically supported Euler–Bernoulli beams. J. Sound Vib. 457, 118–138 (2019)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the two anonymous reviewers for their critical reading and insightful comments and suggestions.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhuang Zhao.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Code availability

Not applicable.

Availability of data and material

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}&{\cosh }\left( {\frac{{\sqrt{2}}}{2} {{\beta }} {{\xi }}} \right) {\cos }\left( {\frac{{\sqrt{2}}}{2} {{\beta }} {{\xi }}} \right) ={{S}}_{0} ({{\xi }}) \end{aligned}$$
(A.1)
$$\begin{aligned}&\frac{{{{\sin }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) {{\cosh }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) + {{\sinh }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) {{\cos }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) }}{{\sqrt{2} {{\beta }}}}={{S}}_{1} ({{\xi }}) \end{aligned}$$
(A.2)
$$\begin{aligned}&\frac{{{{\sin }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) {{\sinh }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) }}{{{{\beta }}^{2} }}={{S}}_{2} ({{\xi }}) \end{aligned}$$
(A.3)
$$\begin{aligned}&\frac{{{{\sin }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) {{\cosh }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) - {{\sinh }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) {{\cos }}\left( {\frac{{\sqrt{2}}}{2}{{\beta }} {{\xi }}} \right) }}{{\sqrt{2} {{\beta }}^{3} }}={{S}}_{3} ({{\xi }}) \end{aligned}$$
(A.4)
$$\begin{aligned}&\frac{{{{\gamma }}_{0} }}{{{{\beta }}^{4} }}\left[ {1 - {{S}}_{0} ({{\xi }})} \right] ={{S}}_{4} ({{\xi }}) \end{aligned}$$
(A.5)
$$\begin{aligned} {{{{\varPsi }}}_0}({{\xi }})= & {} {{{S}}_0}({{\xi }}) + {{{\beta }}^4}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}}({{\tau }}) ({1 + {{{r}}_{{c}}}({{\tau }})}){{{S}}_2} ({{\tau }}){{d}}{{\tau }} \nonumber \\&+ {{{\beta }}^8}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}} ({{\tau }})\int \limits _0^{{\tau }} {{{S}}_3}({{{u}} - {{\tau }}}){{{r}}_{{c}}} ({{u}}){{{S}}_2}({{u}}) {{\mathrm{d}u\mathrm{d}}}{{\tau }} \end{aligned}$$
(A.6)
$$\begin{aligned} {{{\varPsi }}_1}({{\xi }})= & {} {{{S}}_1}({{\xi }}) + {{{\beta }}^4}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}}({{\tau }})({1 + {{{r}}_{{c}}}({{\tau }})}) {{{S}}_3}({{\tau }})\mathrm{d}{{\tau }} \nonumber \\&+ {{{\beta }}^8}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}} ({{\tau }})\int \limits _0^{{\tau }} {{{S}}_3}({{{u}} - {{\tau }}}){{{r}}_{{c}}} ({{u}}){{{S}}_3}({{u}}) {{\mathrm{d}u\mathrm{d}}}{{\tau }} \end{aligned}$$
(A.7)
$$\begin{aligned} {{{\varPsi }}_2}({{\xi }})= & {} {{{S}}_2}({{\xi }}) - \int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}} ({{\tau }})({1 + {{{r}}_{{c}}} ({{\tau }})}){{{S}}_0}({{\tau }}) \mathrm{d}{{\tau }} \nonumber \\&- {{{\beta }}^4}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}} ({{\tau }})\int \limits _0^{{\tau }} {{{S}}_3}({{{u}} - {{\tau }}}){{{r}}_{{c}}}({{u}}) {{{S}}_0}({{u}}){{\mathrm{d}u\mathrm{d}}}{{\tau }} \end{aligned}$$
(A.8)
$$\begin{aligned} {{{\varPsi }}_3}({{\xi }})= & {} {{{S}}_3}({{\xi }}) - \int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}}({{\tau }}) ({1 + {{{r}}_{{c}}}({{\tau }})}) {{{S}}_1}({{\tau }})\mathrm{d}{{\tau }} \nonumber \\&- {{{\beta }}^4}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}}({{\tau }}) \int \limits _0^{{\tau }} {{{S}}_3}({{{u}} - {{\tau }}}){{{r}}_{{c}}}({{u}}) {{{S}}_1}({{u}}){{\mathrm{d}u\mathrm{d}}}{{\tau }} \end{aligned}$$
(A.9)
$$\begin{aligned} {{{\varPsi }}_4}({{\xi }})= & {} \frac{{{{{\gamma }}_0}}}{{{{{\beta }}^4}}} [{1 - {{{S}}_0}({{\xi }})}] - {{{\gamma }}_0}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}} ({{\tau }})({1 + {{{r}}_{{c}}} ({{\tau }})}){{{S}}_2}({{\tau }}) \mathrm{d}{{\tau }} \nonumber \\&- {{{\gamma }}_0}{{{\beta }}^4}\int \limits _0^{{\xi }} {{{S}}_1}({{{\tau }} - {{\xi }}}){{{r}}_{{c}}} ({{\tau }})\int \limits _0^{{\tau }} {{{S}}_3}({{{u}} - {{\tau }}}){{{r}}_{{c}}} ({{u}}){{{S}}_2}({{u}}) {{\mathrm{d}u\mathrm{d}}}{{\tau }} \end{aligned}$$
(A.10)

Appendix B

Boundary conditions

Equation

P–P

Coefficient equation

\(\left( \frac{{{\phi }}({1})}{{{\phi }}^{\prime \prime }({1})} \right) =\left[ {\begin{array}{*{20}c} {{{\varPsi }}}_{{1}}({1}) &{} {{{\varPsi }}}_{{3}}({1})\\ {{{\varPsi }}}_{{1}}^{\prime \prime }({1}) &{} {{{\varPsi }}}_{{3}}^{\prime \prime }({1})\\ \end{array} } \right] \left( \frac{{{\phi }}^{\prime }(0)}{{{\phi }}^{\prime \prime \prime }(0)} \right) =\left( {\begin{array}{l} -{{{\varPsi }}}_{{4}}({1}) \\ -{{{\varPsi }}}_{{4}}^{\prime \prime }({1}) \\ \end{array}} \right) \)

(B. 1)

Deflection equation

\({{\phi }}( {{\xi }})={{\phi }}^{\prime }(0){{{\varPsi }}}_{{1}}( {{\xi }})+{{\phi }}^{\prime \prime \prime }(0){{{\varPsi }}}_{{3}}( {{\xi }})\)

(B. 2)

C–C

Coefficient equation

\(\left( \frac{{{\phi }}({1})}{{{\phi }}^{\prime }({1})} \right) =\left[ {\begin{array}{*{20}c} {{{\varPsi }}}_{{2}}({1}) &{} {{{\varPsi }}}_{{3}}({1})\\ {{{\varPsi }}}_{{2}}^{\prime }({1}) &{} {{{\varPsi }}}_{{3}}^{\prime }({1})\\ \end{array} } \right] \left( \frac{{{\phi }}^{\prime \prime }(0)}{{{\phi }}^{\prime \prime \prime }(0)} \right) =\left( {\begin{array}{l} -{{{\varPsi }}}_{{4}}({1}) \\ -{{{\varPsi }}}_{{4}}^{\prime }({1}) \\ \end{array}} \right) \)

(B. 3)

Deflection equation

\({{\phi }}( {{\xi }})={{\phi }}^{\prime \prime }(0){{{\varPsi }}}_{{2}}( {{\xi }})+{{\phi }}^{\prime \prime \prime }(0){{{\varPsi }}}_{{3}}( {{\xi }})\)

(B. 4)

C–F

Coefficient equation

\(\left( \frac{{{\phi }}^{\prime \prime }({1})}{{{\phi }}^{\prime \prime \prime }({1})} \right) =\left[ {\begin{array}{*{20}c} {{{\varPsi }}}_{{2}}^{\prime \prime }({1}) &{} {{{\varPsi }}}_{{3}}^{\prime \prime }({1})\\ {{{\varPsi }}}_{{2}}^{\prime \prime \prime }({1}) &{} {{{\varPsi }}}_{{3}}^{\prime \prime \prime }({1})\\ \end{array} } \right] \left( \frac{{{\phi }}^{\prime \prime }(0)}{{{\phi }}^{\prime \prime \prime }(0)} \right) =\left( {\begin{array}{l} -{{{\varPsi }}}_{{4}}^{\prime \prime }({1}) \\ -{{{\varPsi }}}_{{4}}^{\prime \prime \prime }({1}) \\ \end{array}} \right) \)

(B. 5)

Deflection equation

\({{\phi }}( {{\xi }})={{\phi }}^{\prime \prime }(0){{{\varPsi }}}_{{2}}( {{\xi }})+{{\phi }}^{\prime \prime \prime }(0){{{\varPsi }}}_{{3}}( {{\xi }})\)

(B. 6)

C–P

Coefficient equation

\(\left( \frac{{{\phi }}({1})}{{{\phi }}^{\prime \prime }({1})} \right) =\left[ {\begin{array}{*{20}c} {{{\varPsi }}}_{{2}}({1}) &{} {{{\varPsi }}}_{{3}}({1})\\ {{{\varPsi }}}_{{2}}^{\prime \prime }({1}) &{} {{{\varPsi }}}_{{3}}^{\prime \prime }({1})\\ \end{array} } \right] \left( \frac{{{\phi }}^{\prime \prime }(0)}{{{\phi }}^{\prime \prime \prime }(0)} \right) =\left( {\begin{array}{l} -{{{\varPsi }}}_{{4}}({1}) \\ -{{{\varPsi }}}_{{4}}^{\prime \prime }({1}) \\ \end{array}} \right) \)

(B. 7)

Deflection equation

\({{\phi }}( {{\xi }})={{\phi }}^{\prime \prime }(0){{{\varPsi }}}_{{2}}( {{\xi }})+{{\phi }}^{\prime \prime \prime }(0){{{\varPsi }}}_{{3}}( {{\xi }})\)

(B. 8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X. Analytical solution of deflection of multi-cracked beams on elastic foundations under arbitrary boundary conditions using a diffused stiffness reduction crack model. Arch Appl Mech 91, 277–299 (2021). https://doi.org/10.1007/s00419-020-01769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01769-1

Keywords

Navigation