Skip to main content
Log in

Electron Spin Relaxation of Tb3+ and Tm3+ Ions

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron spin relaxation times T1 and Tm of Tb3+ and Tm3+ in 1:1 water:ethanol and of Tb3+ doped (2%) in crystalline La2(oxalate)3 decahydrate were measured between about 4.2 and 10 K. Both cations are non-Kramers ions and have J = 6 ground states. Echo-detected spectra are compared with CW spectra and with field-stepped direct-detected EPR spectra. Due to the strong temperature dependence of T1, measurements were not made above 10 K. Between about 4.2 and 6 K T1 is strongly concentration dependent between 1 and ~ 50 mM. T1 values at 4.2 K are in the µs range which is orders of magnitude faster than for 3d transition metals. Phase memory times, Tm, are less than 500 ns, which is short relative to values observed for 3d transition metals and organic radicals at 4 K. Tm is longer in the oxalate lattice which is attributed to the lower proton concentration in oxalate than in the organic solvent, which decreases nuclear spin diffusion. The rigidity of the crystalline lattice also may contribute to longer Tm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.K. Solovarov, V.F. Tarasov, E.V. Zharikov, JETP Lett. 104, 94–98 (2016)

    ADS  Google Scholar 

  2. V.F. Tarasov, N.K. Solovarov, E.V. Zharikov, Opt. Spectrosc. 121, 560–566 (2016)

    ADS  Google Scholar 

  3. D. Parker, E.A. Suturina, I. Kuprov, N.F. Chilton, Acc. Chem. Res. 53, 1520–1534 (2020)

    Google Scholar 

  4. A.E. Merbach, E. Toth, The Chemistry of Contrast Agents in Magnetic Resonance Imaging (Wiley, Chichester, 2001)

    Google Scholar 

  5. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 1970), pp. 302–320

    Google Scholar 

  6. J.W. Orton, Electron Paramagnetic Resonance: An Introduction to Transition Group Ions in Crystals (Gordon and Breach, New York, 1968)

    Google Scholar 

  7. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001), p. 58 and 263

    Google Scholar 

  8. J.M. Baker, J.C.A. Hutchison, P.M. Martineau, Proc. R. Soc. Lond. A Math. Phys. Sci. 403, 221–233 (1986)

    ADS  Google Scholar 

  9. E.A. Harris, D. Furniss, J. Phys. C Solid State Phys. 21, 7–15 (1988)

    ADS  Google Scholar 

  10. V.A. Pashchenko, A.G.M. Jansen, M.I. Kobets, E.N. Khats'ko, P. Wyder, Phys. Rev. B 62, 1197–1202 (2000)

    ADS  Google Scholar 

  11. J.M. Baker, B. Bleaney, Proc. Phys. Soc. A 68, 257 (1955)

    ADS  Google Scholar 

  12. J.S. Griffith, Phys. Rev. 132, 316–319 (1963)

    MathSciNet  ADS  Google Scholar 

  13. G. Jeschke, A. Schweiger, J. Chem. Phys. 106, 9979–9991 (1997)

    ADS  Google Scholar 

  14. H.P. Moll, J. vanTol, P. Wyder, M.S. Tagirov, D.A. Tayurskii, Phys. Rev. Lett. 77, 3459–3462 (1996)

    ADS  Google Scholar 

  15. M.J. Weber, R.W. Bierig, Phys. Rev. 134, A1492–A1503 (1964)

    ADS  Google Scholar 

  16. I.N. Kurkin, E.A. Tsvetkov, Phys. Stat. Solid A 25, 731–737 (1974)

    ADS  Google Scholar 

  17. J.W. Jewett, P.E. Wigen, J. Chem. Phys. 61, 2991–2995 (1974)

    ADS  Google Scholar 

  18. M.C. Minu, G. Vimal, K.P. Mani, G. Jose, P.R. Biju, C. Joseph, N.V. Unnikrishnan, M.A. Ittyachen, J. Mater. Res. Technol. 5, 268–274 (2016)

    Google Scholar 

  19. G. Vimal, K.P. Mani, G. Jose, P.R. Biju, C. Joseph, N.V. Unnikrishnan, M.A. Ittyachen, J. Cryst. Growth 404, 20–25 (2014)

    ADS  Google Scholar 

  20. T. Ngendahimana, R. Ayikpoe, J.A. Latham, G.R. Eaton, S.S. Eaton, J. Inorg. Biochem. (2019). https://doi.org/10.1016/j.jinorgbio.2019.110806

    Article  Google Scholar 

  21. M. Laviolette, M. Auger, S. Desilets, Macromolecules 32, 1602–1610 (1999)

    ADS  Google Scholar 

  22. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 132, 65–77 (1998)

    ADS  Google Scholar 

  23. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Magn. Reson. 147, 273–285 (2000)

    ADS  Google Scholar 

  24. Z. Yu, T. Liu, H. Elajaili, G.A. Rinard, S.S. Eaton, G.R. Eaton, J. Magn. Reson. 258, 58–64 (2015)

    ADS  Google Scholar 

  25. S.-H. Huang, G.-D. Zhou, T.C.W. Mak, J. Cryst. Spectrosc. Res. 21, 127–131 (1991)

    Google Scholar 

  26. G.A. Rinard, R.W. Quine, S.S. Eaton, G.R. Eaton, W. Froncisz, J. Magn. Reson. A 108, 71–81 (1994)

    ADS  Google Scholar 

  27. L. Kevan, in Time Domain Electron Spin Resonance, ed. by L. Kevan, R.N. Schwartz (Wiley, New York, 1979), pp. 279–341

  28. J.R. Harbridge, G.R. Eaton, S.S. Eaton, in Modern applications of EPR/ESR: from biophysics to materials science. Proceedings of the Asia-Pacific EPR/ESR symposium, 1st, Kowloon, Hong Kong, Jan 20–24, 1997, pp. 220–225 (1998)

  29. J.R. Harbridge, S.S. Eaton, G.R. Eaton, J. Phys. Chem. A 107, 598–610 (2003)

    Google Scholar 

  30. S.S. Eaton, G.R. Eaton, Biol. Magn. Reson. 19, 29–154 (2000)

    Google Scholar 

  31. A. Narath, in Hyperfine Interactions, ed. by A.J. Freeman, R.B. Frankel (Academic Press, New York, 1967), p. 297

  32. L.R. Dalton, A.L. Kwiram, J.A. Cowen, Chem. Phys. Lett. 14, 77–81 (1972)

    ADS  Google Scholar 

  33. M.K. Bowman, in Electron Paramagnetic Resonance: A Practitioner's Toolkit, ed. by M. Brustolon, E. Giamello (Wiley, Hoboken, 2009), p. 174

  34. S.S. Eaton, G.R. Eaton, in Handbook of EPR Spectroscopy: Fundamentals and Methods, ed. by D. Goldfarb, S. Stoll (Wiley, Chichester, 2018), pp. 175–192

  35. A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, London, 1961), pp. 405–409

    Google Scholar 

  36. J. Murphy, Phys. Rev. 145, 241–247 (1966)

    ADS  Google Scholar 

  37. J.G. Castle Jr., D.W. Feldman, Phys. Rev. A 137, 671–673 (1965)

    ADS  Google Scholar 

  38. I. Bertini, G. Martini, C. Luchinat, in Handbook of Electron Spin Resonance: Data Sources, Computer Technology, Relaxation, and ENDOR, ed. by C.P. Poole, Jr, H.A. Farach (American Institute of Physics, New York, 1994), pp. 79–310

  39. K.J. Standley, R.A. Vaughan, Electron Spin Relaxation Phenomena in Solids (Plenum Press, New York, 1969)

    Google Scholar 

  40. A.A. Sukhanov, V.F. Tarasov, Y.D. Zavartsev, A.I. Zagumennyi, S.A. Kutovoi, JETP Lett. 108, 210–214 (2018)

    ADS  Google Scholar 

  41. A. Zecevic, G.R. Eaton, S.S. Eaton, M. Lindgren, Mol. Phys. 95, 1255–1263 (1998)

    ADS  Google Scholar 

  42. K.M. Salikhov, Y.D. Tsvetkov, in Time Domain Electron Spin Resonance, ed. by L. Kevan, R.N. Schwartz (Wiley, New York, 1979), pp. 232–277

  43. G.H. Larson, C.D. Jeffries, Phys. Rev. 145, 311–324 (1966)

    ADS  Google Scholar 

  44. J.T. Yu, J. Phys. Chem. Solids 37, 301–303 (1976)

    ADS  Google Scholar 

  45. J.M. Baker, J.C.A. Hutchison, M.J.M. Leask, P.M. Martineau, M.G. Robinson, Proc. R. Soc. Lond. A Math. Phys. Sci. 413, 515–528 (1987)

    ADS  Google Scholar 

  46. A. Abragam, B. Bleaney, Electron paramagnetic resonance of transition ions (Oxford University Press, Oxford, 1970)

    Google Scholar 

  47. W.B. Mims, J.L. Davis, J. Chem. Phys. 65, 3266–3274 (1976)

    ADS  Google Scholar 

  48. D.C. Baker, H.H. Dearman, J. Chem. Phys. 56, 3664–3671 (1972)

    ADS  Google Scholar 

  49. M.R. Gafurov, V.A. Ivanshin, I.N. Kurkin, M.P. Rodionova, H. Keller, M. Gutmann, U. Staub, J. Magn. Reson. 161, 210–214 (2003)

    ADS  Google Scholar 

  50. C.A. Hutchison, E. Wong, J. Chem. Phys. 29, 754–760 (1958)

    ADS  Google Scholar 

  51. I. Laursen, L.M. Holmes, J. Phys. C Solid State Phys. 7, 3765–3769 (1974)

    ADS  Google Scholar 

  52. J.B. Gruber, E.A. Karlow, D.N. Olsen, U. Ranon, Phys. Rev. B 2, 49–53 (1970)

    ADS  Google Scholar 

  53. I.E. Rouse, J.B. Gruber, Phys. Rev. B 13, 3764–3773 (1976)

    ADS  Google Scholar 

  54. G.R. Asatryan, A.P. Skvortsov, G.S. Shakurov, Phys. Solid State 55, 1039–1042 (2013)

    ADS  Google Scholar 

  55. A.A. Konovalov, D.A. Lis, K.A. Subbotin, V.F. Tarasov, E.V. Zharikov, Appl. Magn. Reson. 30, 673–682 (2006)

    Google Scholar 

  56. A.E. Nikiforov, A.Y. Zakharov, M.Y. Ugryumov, S.A. Kazanskii, A.I. Ryskin, G.S. Shakurov, Phys. Solid State 47, 1431–1435 (2005)

    ADS  Google Scholar 

  57. G.S. Shakurov, V.F. Tarasov, B.Z. Malkin, A.I. Iskhakova, L.A. Kasatkina, J. Heber, M. Altwein, Appl. Magn. Reson. 14, 415–426 (1998)

    Google Scholar 

  58. E.V. Edinach, Y.A. Uspenskaya, A.S. Gurin, R.A. Babunts, H.R. Asatyan, N.G. Romanov, A.G. Badalyan, P.G. Baranov, Phys. Rev. B 100, 104435 (2019)

    ADS  Google Scholar 

  59. L. Rimai, R.W. Bierig, B.D. Silverman, Phys. Rev. 146, 222–232 (1966)

    ADS  Google Scholar 

  60. R.W. Bierig, M.J. Weber, S.I. Warshaw, Phys. Rev. 134, A1504–A1516 (1964)

    ADS  Google Scholar 

  61. B.G. Berulava, T.I. Sanadze, O.G. Khakhanashvili, Sov. Phys. Solid State 7, 509–510 (1965)

    Google Scholar 

  62. R.C. Mikkelson, H.J. Stapleton, Phys. Rev. 140, A1968–A1982 (1965)

    ADS  Google Scholar 

  63. G.H. Larson, C.D. Jeffries, Phys. Rev. 141, 461–468 (1966)

    ADS  Google Scholar 

  64. G.R. Eaton, S.S. Eaton, D.P. Barr, R.T. Weber, Quantitative EPR (Springer, New York, 2010)

    Google Scholar 

Download references

Acknowledgements

This research was partially funded by NIH NCI R01 CA 177744. The closed cycle cooling system was developed by ColdEdge Technologies, Allentown PA, and installed with assistance by Dr. Arthur H. Heiss. Dr. Velavan Kathirvelu, National Institute of Technology Goa, assisted in providing the Tb3+ in La2(oxalate)3 crystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth R. Eaton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McPeak, J., Alexander, D., Joseph, C. et al. Electron Spin Relaxation of Tb3+ and Tm3+ Ions. Appl Magn Reson 51, 961–976 (2020). https://doi.org/10.1007/s00723-020-01262-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01262-6

Navigation