Skip to main content
Log in

Geometrically nonlinear Euler–Bernoulli and Timoshenko micropolar beam theories

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2020

This article has been updated

Abstract

Two ways of incorporating moderate rotations of planes normal to the axis of a straight beam into the Euler–Bernoulli and the Timoshenko micropolar beam theories are presented. In the first case, the von Kármán nonlinear strains are used to incorporate the moderate rotations of normal planes into the beam theories. In the second case, appropriate approximations are made on the nonlinear Cosserat deformation gradient to reflect the condition of moderate rotations of the normal planes. The governing nonlinear differential equations and corresponding natural boundary conditions in both cases are derived using the principle of virtual displacements. A weak-form Galerkin displacement finite element formulation is presented for the developed nonlinear beam theories. The phenomenon of locking usually encountered in beam displacement finite elements is eliminated using higher-order finite elements with nodes located at spectral points. Finally, numerical examples are presented to illustrate the effect of coupling number and bending characteristic length scale on deflections and microrotations when a micropolar beam is modeled with the developed nonlinear beam theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 10 October 2020

    In the version of the article originally

Notes

  1. We use superscript E to denote terms corresponding to the Euler–Bernoulli micropolar beam theory.

  2. We use superscript T to denote terms corresponding to the Timoshenko micropolar beam theory.

  3. GLL points are proven to be effective in eliminating the Runge effect in Lagrange interpolation functions, however that is not guaranteed for Hermite interpolation functions. In the present work, we used a maximum of 8 nodes per element, located at spectral points and no Runge effect was observed for Hermite interpolation functions used in Euler–Bernoulli micropolar beam theories.

References

  1. Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size dependent functionally graded microbeams based on the strain gradient Timoshenk beam theory. Compos. Struct. 94(1), 221–228 (2011)

    Google Scholar 

  2. Ansari, R., Shakouri, A.H., Bazdid-Vahdti, M., Norouzzadeh, A.H.R.: A nonclassical finite element approach for the nonlinear analysis of micropolar plates. J. Comput. Nonlinear Dyn. 12(1), 011019 (2017)

    Google Scholar 

  3. Arbind, A., Reddy, J.N., Srinivasa, A.R.: Modifed couple stress-based third-order theory for nonlinear analysis of functionally graded beams. Lat. Am. J. Solids Struct. 11(3), 459–487 (2014)

    Google Scholar 

  4. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  5. Bauchau, O.A., Craig, J.I.: Structural Analysis: With Applications to Aerospace Structures, vol. 163. Springer, Berlin (2009)

    Google Scholar 

  6. Chowdhury, S.R., Reddy, J.N.: Geometrically exact micropolar Timoshenko beam and its application in modelling sandwich beams made of architected lattice core. Compos. Struct. 226, 111228 (2019)

    Google Scholar 

  7. Cosserat, E., Cosserat, F.: Théorie des corps déformables. A. Hermann et fils (1909)

  8. Ding, N., Xu, X., Zheng, Z.: A size-dependent nonlinear microbeam model based on the micropolar elasticity theory. Acta Mech. 227(12), 3497–3515 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112–113, 354–363 (2012)

    Google Scholar 

  10. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Briefs in Applied Sciences and Technology-Continuum Mechanics. Springer, Berlin (2013)

    MATH  Google Scholar 

  11. Eremeyev, V.A., Skrzat, A., Stachowicz, F.: On finite element computations of contact problems in micropolar elasticity. Adv. Mater. Sci. Eng. 2016, 433–447 (2016)

    Google Scholar 

  12. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, Berlin (2012)

    MATH  Google Scholar 

  13. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids, i and ii. Int. J. Eng. Sci. 2(2), 189–203 (1964)

    MATH  Google Scholar 

  14. Fan, S., Cheng, Z.: A micropolar model for elastic properties in functionally graded materials. Adv. Mech. Eng. 10(8), 168781401878952 (2018)

    Google Scholar 

  15. Huang, F.Y., Yan, B.H., Yan, J.L., Yang, D.U.: Bending analysis of micropolar elastic beam using a 3-D finite element method. Int. J. Eng. Sci. 38(3), 275–286 (2000)

    MATH  Google Scholar 

  16. Ivanova, E.A., Krivtsov, A.M., Morozov, N.F.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48, 455–458 (2003)

    Google Scholar 

  17. Kafadar, C.B., Eringen, A.C.: Micropolar media—I the classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971a)

    MATH  Google Scholar 

  18. Kafadar, C.B., Eringen, A.C.: Micropolar media—II the relativisitc theory. Int. J. Eng. Sci. 9(3), 307–329 (1971b)

    MATH  Google Scholar 

  19. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M., Ahmadian, M.T.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49(11), 1256–1267 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  21. Karttunen, A.T., Reddy, J.N., Romanoff, J.: Two-scale micropolar plate model for web-core sandwich panels. Int. J. Solids Struct. 170, 82–94 (2019)

    Google Scholar 

  22. Khodabakhshi, P., Reddy, J.N.: A unified beam theory with strain gradient effect and the von kármán nonlinearity. ZAMM J. Appl. Math. Mech. 97(1), 70–91 (2017)

    Google Scholar 

  23. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22, 55–63 (1986)

    Google Scholar 

  24. Lakes, R.S.: Experimental micro mechanics methods for conventional and negative poisson’s ration cellular solids as cosserat continua. Trans. ASME J. Eng. Mater. Technol. 113, 148–155 (1991)

    Google Scholar 

  25. Lakes, R.S.: Experimental methods for study of cosserat elastic solids and other generalized continua. In: Mühlhaus, H. (ed.) Continuum Models for Materials with Micro-Structure, pp. 1–22. Wiley, New York (1995)

    MATH  Google Scholar 

  26. Liu, F., Wang, L., Liu, X., Lu, P.: Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints. Int. J. Mech. Sci. 165, 105202 (2020)

    Google Scholar 

  27. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko bema model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Ma, H.M., Gao, X.L., Reddy, J.N.: A nonclassical Reddy–Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. 8(2), 167–180 (2010)

    Google Scholar 

  29. McGregor, M., Wheel, M.A.: On the coupling number and characteristic length of micropolar media of differing topology. Proc. R. Soc. A 470, 20140150 (2014)

    Google Scholar 

  30. Nampally, P., Karttunen, A.T., Reddy, J.N.: Nonlinear finite element analysis of lattice core sandwich beams. Eur. J. Mech A Solid 74, 431–439 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Noor, A.K., Nemeth, M.P.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21(2), 249–263 (1980)

    MATH  Google Scholar 

  32. Nowacki, W.: Theory of Micropolar Elasticity. Springer, New York (1970)

    MATH  Google Scholar 

  33. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  34. Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006)

    Google Scholar 

  35. Pau, A., Trovalusci, P.: Block masonry as equivalent micropolar continua: the role of relative rotations. Acta. Mech. 223, 1455–1471 (2012)

    MATH  Google Scholar 

  36. Payette, G.S., Reddy, J.N.: A nonlinear finite element framework for viscoelastic beams based on the high-order Reddy beam theory. J. Mater. Technol. 135(1), 011005-1–011005-11 (2013)

  37. Payette, G.S., Reddy, J.N.: A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures. Comput. Methods Appl. Mech. Eng. 278, 664–704 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009a)

    MathSciNet  MATH  Google Scholar 

  39. Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the non-linear cosserat continuum. Int. J. Solids Struct. 46(11–12), 2477–2480 (2009b)

    MATH  Google Scholar 

  40. Ramezani, S., Naghdabadi, R., Sohrabpour, S.: Analysis of micropolar elastic beams. Eur. J. Mech. A Solids 28(2), 202–208 (2009)

    MATH  Google Scholar 

  41. Reddy, J.N.: Nonlocal theries for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2–8), 288–307 (2007)

    MATH  Google Scholar 

  42. Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48(11), 1507–1518 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2015)

    Google Scholar 

  45. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics, 3rd edn. Wiley, New York (2018)

    Google Scholar 

  46. Reddy, J.N.: An Introduction to the Finite Element Method, 4th edn. McGraw-Hill, New York (2019)

    Google Scholar 

  47. Schmidt, R., Reddy, J.N.: A refined small strain and moderate rotation theory of elastic anisotropic shells. J. Appl. Mech. 55(3), 611–617 (1988)

    MATH  Google Scholar 

  48. Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  49. Thai, H.T.: A nonlocal beam theory for bending, buckling and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Trovalusci, P., De Bellis, M.L., Masiani, R.: A multiscale description of particle composites: from lattice microstructures to micropolar continua. Compos. B Eng. 128, 164–173 (2017)

    Google Scholar 

  51. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M., Murrali, A.: Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A Solids 49, 396–407 (2015)

    Google Scholar 

  52. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 29(4), 591–599 (2010)

    Google Scholar 

  53. Wang, C.M., Reddy, J.N., Lee, K.H.: Shear Deformable Beams and Plates. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  54. Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this research, in parts, through the Oscar S. Wyatt Endowed Chair and a grant from the National Science Foundation (NSF Proposal 1952873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Constitutive relations

Table 3 Constitutive relations for the von Kármán micropolar beam theories
Table 4 Constitutive relations for nonlinear micropolar beam theories

The constants in the constitutive relations of Tables 3 and 4 are defined as

$$\begin{aligned}&A_{11} = \int _{A}(\lambda + 2\mu + \kappa )\mathrm{d}A, \qquad D_{11} = \int _{A}(\lambda + 2\mu + \kappa )z^{2}\mathrm{d}A, \\&A_{44} = \int _{A}(2\mu + \kappa )\mathrm{d}A, \qquad A_{77} = \int _{A} \kappa \mathrm{d}A, \qquad E_{44} = \int _{A}, \gamma \mathrm{d}A, \end{aligned}$$

where A is the cross section area of the beam.

Appendix B Finite element stiffness matrices

1.1 Appendix B.1 Euler–Bernoulli beam theory

We use the following notation in representing the element stiffness and tangent stiffness matrices of Euler–Bernoulli beam theories.

$$\begin{aligned} ^{MN}S_{ij}^{xx}&= \frac{\mathrm{d} L_{i}^{(M)}}{\mathrm{d}x} \frac{\mathrm{d} L_{j}^{(N)}}{d x},\quad ^{MN}S_{ij}^{0x} = L_{i}^{(M)} \frac{\mathrm{d} L_{j}^{(N)}}{\mathrm{d}x}, \quad ^{MN}S_{ij}^{x0} = \frac{\mathrm{d} L_{i}^{(M)}}{\mathrm{d}x} L_{j}^{(N)}, \quad ^{MN}S_{ij}^{00} = L_{i}^{(M)} L_{j}^{(N)}, \\ ^{MN}S_{IJ}^{x^{2}x^{2}}&= \frac{\mathrm{d}^{2} H_{I}^{(M)}}{\mathrm{d}x^{2}} \frac{\mathrm{d}^{2} H_{J}^{(N)}}{\mathrm{d}x^{2}},\quad ^{MN}S_{IJ}^{xx} = \frac{\mathrm{d} H_{I}^{(M)}}{\mathrm{d}x} \frac{\mathrm{d} H_{J}^{(N)}}{\mathrm{d}x}, \quad ^{MN}S_{Ij}^{xx} = \frac{\mathrm{d} H_{I}^{(M)}}{\mathrm{d}x} \frac{\mathrm{d} L_{j}^{(N)}}{\mathrm{d}x}, \\ ^{MN}S_{iJ}^{xx}&= \frac{\mathrm{d} L_{i}^{(M)}}{\mathrm{d}x}\frac{\mathrm{d} H_{J}^{(N)}}{d x}, \quad ^{MN}S_{Ij}^{x0} = \frac{\mathrm{d} H_{I}^{(M)}}{\mathrm{d}x} L_{j}^{(N)}, \quad ^{MN}S_{iJ}^{0x} = L_{i}^{(M)}\frac{\mathrm{d} H_{J}^{(N)}}{\mathrm{d}x }, \end{aligned}$$

where \(M,N = \{1,2,3\}\), \(i,j = \{1,2,\dots n\}\) and \(I,J = \{1,2,\dots 2n\}\), where n is the number of nodes in a typical finite element.

1.1.1 Appendix B.1.1. von Kaŕmán micropolar Euler–Bernoulli Beam

$$\begin{aligned} \begin{aligned} K_{ij}^{11}&= \int _{x_a}^{x_b}A_{11} \,^{11}S_{ij}^{xx}\mathrm{d}x, \qquad K_{iJ}^{12}=\int _{x_a}^{x_b} \frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\right) \,^{12}S_{iJ}^{xx}\mathrm{d}x, \qquad K_{Ij}^{21}=\int _{x_a}^{x_b}A_{11}\left( \frac{\mathrm{d} w_{0}^\mathrm{E}}{\mathrm{d}x}\right) \,^{21}S_{Ij}^{xx}\mathrm{d}x, \\ K_{IJ}^{22}&=\int _{x_a}^{x_b}\Biggl \{D_{11}\,^{22}S_{IJ}^{x^{2}x^{2}}+ \frac{A_{11}}{2}\left( \frac{\mathrm{d} w_{0}^\mathrm{E}}{\mathrm{d}x}\right) ^2\,^{22}S_{IJ}^{xx} + 2A_{77}\,^{22}S_{IJ}^{xx} \Biggr \}\mathrm{d}x, \\ K_{Ij}^{23}&= \int _{x_a}^{x_b}2A_{77}\,^{23}S_{Ij}^{x0}\mathrm{d}x, \qquad K_{iJ}^{32} = \int _{x_a}^{x_b}2A_{77}\,^{32}S_{iJ}^{0x} \mathrm{d}x, \qquad K_{ij}^{33}=\int _{x_a}^{x_b}\Biggl \{E_{44}\,^{33}S_{ij}^{xx}+ 2A_{77}\,^{33}S_{ij}^{00}\Biggr \}\mathrm{d}x. \end{aligned} \end{aligned}$$

The components of the element tangent stiffness matrix are the same as the components of the element stiffness matrix, except for the following terms:

$$\begin{aligned} \begin{aligned} T_{iJ}^{12}&= K_{iJ}^{12} + \int _{x_a}^{x_b} \frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\right) \,^{12}S_{iJ}^{xx}\mathrm{d}x, \qquad T_{IJ}^{22} = K_{IJ}^{22} +\int _{x_a}^{x_b} A_{11}\left( \frac{\mathrm{d} u_{0}^\mathrm{E}}{\mathrm{d}x}+\left( \frac{\mathrm{d} w_{0}^\mathrm{E}}{\mathrm{d}x}\right) ^2\right) \,^{22}S_{IJ}^{xx} \mathrm{d}x. \\ \end{aligned} \end{aligned}$$

1.1.2 Appendix B.1.2. Micropolar nonlinear Euler–Bernoulli beam

$$\begin{aligned}&\begin{aligned} K_{ij}^{11}&=\int _{x_a}^{x_b}A_{11}\,^{11}S_{ij}^{xx} \mathrm{d}x, \qquad K_{iJ}^{12}=-\int _{x_a}^{x_b} \frac{A_{11}}{2}\psi _{y}^\mathrm{E} \,^{12}S_{iJ}^{xx}\mathrm{d}x, \qquad K_{ij}^{13}=-\int _{x_a}^{x_b} \frac{A_{11}}{2} \frac{\mathrm{d} w_{0}^\mathrm{E}}{\mathrm{d}x} \,^{13}S_{ij}^{x0}\mathrm{d}x, \\ K_{Ij}^{21}&=-\int _{x_a}^{x_b}\frac{A_{11}}{2} \psi _{y}^\mathrm{E} \,^{21}S_{Ij}^{xx}\mathrm{d}x, \qquad K_{IJ}^{22}=\int _{x_a}^{x_b}\Biggl \{D_{11}\,^{22}S_{IJ}^{x^{2}x^{2}}+ \frac{A_{11}}{2}(\psi _{y}^\mathrm{E})^2\,^{22}S_{IJ}^{xx} + 2A_{77}\,^{22}S_{IJ}^{xx} \Biggr \}\mathrm{d}x, \\ K_{Ij}^{23}&= \int _{x_a}^{x_b}\Biggl \{\frac{A_{11}}{2} \left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\psi _{y}^\mathrm{E}-\frac{\mathrm{d}u_{0}^\mathrm{E}}{\mathrm{d}x}\right) +2A_{77}\Biggr \}\,^{23}S_{Ij}^{x0}\mathrm{d}x, \qquad K_{ij}^{31} = -\int _{x_a}^{x_b}\frac{A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\,^{31}S_{ij}^{0x} \mathrm{d}x ,\\ K_{iJ}^{32}&= \int _{x_a}^{x_b}\Biggl \{\frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\psi _{y}^\mathrm{E}-\frac{\mathrm{d}u_{0}^\mathrm{E}}{\mathrm{d}x}\right) +2A_{77}\Biggr \}\,^{32}S_{iJ}^{0x} \mathrm{d}x, \\ K_{ij}^{33}&=\int _{x_a}^{x_b}\Biggl \{E_{44}\,^{33}S_{ij}^{xx}+\frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\right) ^{2}\,^{33}S_{ij}^{00}+ 2A_{77}\,^{33}S_{ij}^{00}\Biggr \}\mathrm{d}x, \end{aligned}\\&\begin{aligned} T_{iJ}^{12}&= K_{iJ}^{12} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\psi _{y}^\mathrm{E} \,^{12}S_{iJ}^{xx}\mathrm{d}x, \qquad T_{ij}^{13} = K_{ij}^{13} -\int _{x_a}^{x_b} \frac{A_{11}}{2} \frac{\mathrm{d} w_{0}^\mathrm{E}}{\mathrm{d}x} \,^{13}S_{ij}^{x0}\mathrm{d}x, \\ T_{Ij}^{21}&= K_{Ij}^{21} -\int _{x_a}^{x_b}\frac{A_{11}}{2} \psi _{y}^\mathrm{E}\,^{21}S_{Ij}^{xx}\mathrm{d}x, \qquad T_{IJ}^{22} = K_{IJ}^{22} + \int _{x_a}^{x_b} \frac{A_{11}}{2}(\psi _{y}^\mathrm{E})^2\,^{22}S_{IJ}^{xx} \mathrm{d}x, \\ T_{Ij}^{23}&= K_{Ij}^{23} + \int _{x_a}^{x_b}\frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\psi _{y}^\mathrm{E}-\frac{\mathrm{d}u_{0}^\mathrm{E}}{\mathrm{d}x}\right) \,^{23}S_{Ij}^{x0}\mathrm{d}x + \int _{x_a}^{x_b}A_{11}\frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\psi _{y}^\mathrm{E}\,^{23}S_{Ij}^{x0}\mathrm{d}x ,\\ T_{ij}^{31}&= K_{ij}^{31} -\int _{x_a}^{x_b}\frac{A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\,^{31}S_{ij}^{0x} \mathrm{d}x, \\ T_{iJ}^{32}&= K_{iJ}^{32} + \int _{x_a}^{x_b}\frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\psi _{y}^\mathrm{E}-\frac{\mathrm{d}u_{0}^\mathrm{E}}{\mathrm{d}x}\right) \,^{32}S_{iJ}^{0x}\mathrm{d}x + \int _{x_a}^{x_b}A_{11}\frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\psi _{y}^\mathrm{E}\,^{32}S_{iJ}^{0x}\mathrm{d}x ,\\ T_{ij}^{33}&= K_{ij}^{33} + \int _{x_a}^{x_b}\frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{E}}{\mathrm{d}x}\right) ^{2}\,^{33}S_{ij}^{00}\mathrm{d}x. \end{aligned} \end{aligned}$$

1.2 Appendix B.2. The Timoshenko beam theory

We shall use the following notation in representing the element stiffness and tangent stiffness matrices of the Timoshenko beam theory:

$$\begin{aligned} ^{MN}S_{ij}^{xx} = \frac{\mathrm{d} L_{i}^{(M)}}{\mathrm{d}x} \frac{\mathrm{d} L_{j}^{(N)}}{d x},\quad ^{MN}S_{ij}^{0x} = L_{i}^{(M)} \frac{\mathrm{d} L_{j}^{(N)}}{\mathrm{d}x}, \quad ^{MN}S_{ij}^{x0} = \frac{\mathrm{d} L_{i}^{(M)}}{\mathrm{d}x} L_{j}^{(N)}, \quad ^{MN}S_{ij}^{00} = L_{i}^{(M)} L_{j}^{(N)}, \end{aligned}$$

where \(M,N = \{1,2,3,4\}\), \(i,j = \{1,2,\dots n\}\), where n is the number of nodes in a typical finite element.

1.2.1 Appendix B.2.1. The von Kaŕmán nonlinear Timoshenko beam

$$\begin{aligned} \begin{aligned} K_{ij}^{11}&=\int _{x_a}^{x_b}A_{11} \,^{11}S_{ij}^{xx} \mathrm{d}x, \qquad K_{ij}^{12}=\int _{x_a}^{x_b} \frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\right) \,^{12}S_{ij}^{xx}\mathrm{d}x, \qquad K_{ij}^{21}=\int _{x_a}^{x_b}A_{11}\left( \frac{\mathrm{d} w_{0}^\mathrm{T}}{\mathrm{d}x}\right) \,^{21}S_{ij}^{xx}\mathrm{d}x, \\ K_{ij}^{22}&=\int _{x_a}^{x_b}\Biggl \{\frac{A_{11}}{2}\left( \frac{\mathrm{d} w_{0}^\mathrm{T}}{\mathrm{d}x}\right) ^2 + \frac{\left( A_{44}+A_{77} \right) }{2} \Biggr \}\,^{22}S_{ij}^{xx} \mathrm{d}x, \qquad K_{ij}^{23}= \int _{x_a}^{x_b}\left( \frac{A_{44}-A_{77}}{2} \right) \,^{23}S_{ij}^{x0} \mathrm{d}x, \\ K_{ij}^{24}&= \int _{x_a}^{x_b} A_{77}\,^{24}S_{ij}^{x0} \mathrm{d}x, \qquad K_{ij}^{32}= \int _{x_a}^{x_b}\left( \frac{A_{44}-A_{77}}{2}\right) \,^{32}S_{ij}^{0x} \mathrm{d}x ,\\ K_{ij}^{33}&=\int _{x_a}^{x_b}\Biggl \{D_{11}\,^{33}S_{ij}^{xx} + \left( \frac{A_{44}+A_{77}}{2}\right) \,^{33}S_{ij}^{00} \Biggr \}\mathrm{d}x, \qquad K_{ij}^{34}=-\int _{x_a}^{x_b}A_{77}\,^{34}S_{ij}^{00} \mathrm{d}x ,\\ K_{ij}^{42}&= \int _{x_a}^{x_b} A_{77}\,^{42}S_{ij}^{0x} \mathrm{d}x, \qquad K_{ij}^{43}=-\int _{x_a}^{x_b}A_{77}\,^{43}S_{ij}^{00} \mathrm{d}x, \qquad K_{ij}^{44}=\int _{x_a}^{x_b}\Biggl \{E_{44}\,^{44}S_{ij}^{xx} + 2A_{77}\,^{44}S_{ij}^{00} \Biggr \}\mathrm{d}x. \end{aligned} \end{aligned}$$

Similarly, the components of the element tangent stiffness matrix are given by

$$\begin{aligned} T_{ij}^{MN} = K_{ij} ^{MN} \end{aligned}$$

except for the following terms:

$$\begin{aligned} T_{ij}^{12}&= 2K_{ij}^{12}, \qquad T_{ij}^{22} = K_{ij}^{22} + \int _{x_a}^{x_b}\left( \frac{A_{11}}{2}\left( \frac{\mathrm{d}u_{0}^\mathrm{T}}{\mathrm{d}x}\right) + A_{11}\left( \frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\right) ^{2}\right) \,^{22}S_{ij}^{xx} \mathrm{d}x. \end{aligned}$$

1.2.2 Appendix B.2.2. The micropolar nonlinear Timoshenko beam

$$\begin{aligned} \begin{aligned} K_{ij}^{11}&=\int _{x_a}^{x_b}A_{11}\,^{11}S_{ij}^{xx} \mathrm{d}x, \qquad K_{ij}^{12}=-\int _{x_a}^{x_b} \frac{A_{11}}{2}\psi _{y}^\mathrm{T}\,^{12}S_{ij}^{xx} \mathrm{d}x, \qquad K_{ij}^{14}=-\int _{x_a}^{x_b} \frac{A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\,^{14}S_{ij}^{x0} \mathrm{d}x, \\ K_{ij}^{21}&=-\int _{x_a}^{x_b}\frac{A_{11}}{2}\psi _{y}^\mathrm{T}\,^{21}S_{ij}^{xx} \mathrm{d}x, \qquad K_{ij}^{22}=\int _{x_a}^{x_b}\Biggl \{\frac{A_{11}}{2}(\psi _{y}^\mathrm{T})^{2} + \frac{\left( A_{44}+A_{77} \right) }{2} \Biggr \}\,^{22}S_{ij}^{xx} \mathrm{d}x ,\\ K_{ij}^{23}&= \int _{x_a}^{x_b}\left( \frac{A_{44}-A_{77}}{2} \right) \,^{23}S_{ij}^{x0} \mathrm{d}x, \qquad K_{ij}^{24}= \int _{x_a}^{x_b}\Biggl \{\frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\psi _{y}^\mathrm{T}-\frac{\mathrm{d}u_{0}^\mathrm{T}}{\mathrm{d}x}\right) + A_{77}\Biggr \} \,^{24}S_{ij}^{x0} \mathrm{d}x ,\\ K_{ij}^{32}&= \int _{x_a}^{x_b}\left( \frac{A_{44}-A_{77}}{2}\right) \,^{32}S_{ij}^{0x} \mathrm{d}x, \qquad K_{ij}^{33}=\int _{x_a}^{x_b}\Biggl \{D_{11}\,^{33}S_{ij}^{xx} + \left( \frac{A_{44}+A_{77}}{2}\right) \,^{33}S_{ij}^{00} \Biggr \}\mathrm{d}x ,\\ K_{ij}^{34}&=-\int _{x_a}^{x_b}A_{77}\,^{34}S_{ij}^{00} \mathrm{d}x, \qquad K_{ij}^{41}= -\int _{x_a}^{x_b} \frac{A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\,^{41}S_{ij}^{0x} \mathrm{d}x ,\\ K_{ij}^{42}&= \int _{x_a}^{x_b}\Biggl \{ A_{77} + \frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\psi _{y}^\mathrm{T}-\frac{\mathrm{d}u_{0}^\mathrm{T}}{\mathrm{d}x}\right) \Biggr \}\,^{42}S_{ij}^{0x} \mathrm{d}x, \qquad K_{ij}^{43} =-\int _{x_a}^{x_b}A_{77}\,^{44}S_{ij}^{00}\mathrm{d}x ,\\ K_{ij}^{44}&=\int _{x_a}^{x_b}\Biggl \{E_{44}\,^{44}S_{ij}^{xx}+ 2A_{77}\,^{44}S_{ij}^{00} + \frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\right) ^{2}\,^{44}S_{ij}^{00}\Biggr \}\mathrm{d}x. \end{aligned} \end{aligned}$$

Similarly, the components of the element tangent stiffness matrix are given by

$$\begin{aligned} T_{ij}^{MN} = K_{ij} ^{MN} \end{aligned}$$

except for the following terms:

$$\begin{aligned} T_{ij}^{12}&= K_{ij}^{12} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\psi _{y}^\mathrm{T}\,^{12}S_{ij}^{xx}\mathrm{d}x, \qquad T_{ij}^{14} = K_{ij}^{14} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\,^{14}S_{ij}^{x0}\mathrm{d}x ,\\ T_{ij}^{21}&= K_{ij}^{21} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\psi _{y}^\mathrm{T}\,^{21}S_{ij}^{xx}\mathrm{d}x, \qquad T_{ij}^{22} = K_{ij}^{22} + \int _{x_a}^{x_b} \frac{A_{11}}{2}(\psi _{y}^\mathrm{T})^{2}\,^{22}S_{ij}^{xx}\mathrm{d}x ,\\ T_{ij}^{24}&= K_{ij}^{24} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\frac{\mathrm{d}u_{0}^\mathrm{T}}{\mathrm{d}x}\,^{24}S_{ij}^{x0}\mathrm{d}x + \int _{x_a}^{x_b} \frac{3A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\psi _{y}^\mathrm{T}\,^{24}S_{ij}^{x0}\mathrm{d}x ,\\ T_{ij}^{41}&= K_{ij}^{41} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\,^{41}S_{ij}^{0x}\mathrm{d}x ,\\ T_{ij}^{42}&= K_{ij}^{42} -\int _{x_a}^{x_b} \frac{A_{11}}{2}\frac{\mathrm{d}u_{0}^\mathrm{T}}{\mathrm{d}x}\,^{42}S_{ij}^{0x}\mathrm{d}x + \int _{x_a}^{x_b} \frac{3A_{11}}{2}\frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\psi _{y}^\mathrm{T}\,^{42}S_{ij}^{0x}\mathrm{d}x ,\\ T_{ij}^{44}&= K_{ij}^{44} + \int _{x_a}^{x_b} \frac{A_{11}}{2}\left( \frac{\mathrm{d}w_{0}^\mathrm{T}}{\mathrm{d}x}\right) ^{2}\,^{44}S_{ij}^{00}\mathrm{d}x. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nampally, P., Reddy, J.N. Geometrically nonlinear Euler–Bernoulli and Timoshenko micropolar beam theories. Acta Mech 231, 4217–4242 (2020). https://doi.org/10.1007/s00707-020-02764-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02764-x

Navigation