Skip to main content
Log in

Evaluation of the integrals of Green’s function of Lamb’s model used in contact problems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamic analysis of contact problems is related to great mathematical difficulties and, thus, unsurprisingly has to date not been solved completely. In this work, a semi-analytical method is proposed to evaluate some integrals of Green’s function used in the dynamic analysis of a rectangular plate resting on the surface of an elastic foundation of inertial properties (Lamb’s model). The great challenge herein is overcoming the singularity present in the study of Green’s function related to this problem. The proposed solution involves the discretization of the studied system (a rectangular plate resting on the surface of an elastic foundation of inertial properties), which leads to a numerical solution in matrix form. All the terms of the matrix are doubly indexed, and the singularity is present in the terms having the same indices. Therefore, special efforts are made to calculate the terms of the matrix having the same indices, in order to eliminate the singularity. This requires solving the integrals of the terms of the matrix with the same indices analytically and the integrals of the terms of the matrix of different indices by numerical methods. Finally, this study of Green’s function is used in the dynamic analysis of the above-defined system and was successfully accomplished with a semi-analytical method leading to determinate values of the Eigen-frequencies and the Eigen-shapes of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lamb, H.: On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. Lond. A203, 1–42 (1904)

    MATH  Google Scholar 

  2. Graff, K.F.: Wave Motion in Elastic Solids. Courier Dover Publications, Mineola (1991)

    MATH  Google Scholar 

  3. Shekhter, O.Y.: The taking into account the inertial properties of the ground in the calculation of a foundation unit on forced vibration. The work’s collection of N.I.I.O., vibration of constructions and foundations 2, 72–89 (Russian Edition) (1948)

  4. Pekeris, C.L.: The seismic buried pulse. Proc. Natl. Acad. Sci. USA 41, 469–480 (1955)

    Article  MathSciNet  Google Scholar 

  5. Chao, C.C.: Dynamical response of an elastic half-space to tangential surface loadings. J. Appl. Mech. ASME 27, 559–567 (1960)

    Article  MathSciNet  Google Scholar 

  6. Georgiadis, H.G., Vamvatsikos, D., Vardoulakis, I.: Numerical implementation of the integral-transform solution to Lamb’s point-load problem. Comput. Mech. 24(2), 90–99 (1999)

    Article  MathSciNet  Google Scholar 

  7. Pradhan, P.K., Baidya, D.K., Ghosh, D.P.: Dynamic response of foundations resting on layered soil by cone model. Soil. Dyn. Earthq. Eng. 24(5), 425–434 (2004)

    Article  Google Scholar 

  8. Jin, B., Liu, H.: Exact solution for horizontal displacement at center of the surface of an elastic half space under horizontal impulsive punch loading. Soil Dyn. Earthq. Eng. 18(6), 495–508 (1999)

    Article  Google Scholar 

  9. Lee, V.W.: Three-dimensional diffraction of elastic waves by a spherical cavity in an elastic half-space, I: closed-form solutions. Soil Dyn. Earthq. Eng. 7(3), 149–161 (1988)

    Article  Google Scholar 

  10. Wu, C., Sun, X., Duan, S., Fang, T.: Influence of damaged area on Lamb wave propagation in composite plate. Comput. Mech. 35, 85–93 (2005)

    Article  Google Scholar 

  11. Anghel, V., Mares, C.: Integral formulation for stability and vibration analysis of beams on elastic foundation. Proc. Roman. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 20(3), 283–290 (2019)

    MathSciNet  Google Scholar 

  12. Wang, F., Tao, X., Xie, L., Raj, S.: Green’s function of multi-layered poroelastic half-space for models of ground vibration due to railway traffic. Earthq. Eng. Eng. Vib. 16(2), 311–328 (2017)

    Article  Google Scholar 

  13. Ding, B., Chen, J.: Solutions of Green’s function for Lamb’s problem of a two-phase saturated medium. Theor. Appl. Mech. Lett. 1(4), 052003 (2011)

    Article  Google Scholar 

  14. Kausel, E.: Lamb’s problem at its simplest. Proc. R. Soc. A: Math. Phys. Eng. Sci. 469(2149), 20120462 (2013)

    Article  MathSciNet  Google Scholar 

  15. Emami, M., Eskandari-Ghadi, M.: Transient interior analytical solutions of Lamb’s problem. Math. Mech. Solids 24(11), 3485–513 (2019)

    Article  MathSciNet  Google Scholar 

  16. Feng, X., Zhang, H.: Exact closed-form solutions for Lamb’s problem. Geophys. J. Int. 214(1), 444–459 (2018)

    Article  Google Scholar 

  17. He, C., Zhou, S., Guo, P., Di, H., Xiao, J.: Dynamic 2.5-D Green’s function for a point load or a point fluid source in a layered poroelastic half-space. Eng. Anal. Bound. Elem. 77, 123–137 (2017)

    Article  MathSciNet  Google Scholar 

  18. Guenfoud, S., Bosakov, S.V., Laefer, D.F.: Dynamic analysis of a beam resting on an elastic half-space with inertial properties. Soil Dyn. Earthq. Eng. 29, 1198–1207 (2009)

    Article  Google Scholar 

  19. Guenfoud, S., Amrane, M.N., Bosakov, S.V., Ouelaa, N.: Semi-analytical evaluation of integral forms associated with Lamb’s problem. Soil Dyn. Earthq. Eng. 29, 438–443 (2008)

    Article  Google Scholar 

  20. Demidovich, B.P., Maron, I.A., Shuvalov, E.Z.: Numerical Analysis Methods. Nayka Publishing Company, Moscow (1967). (Russian Edition)

    Google Scholar 

  21. Gradshteyn, I.S., Ryzhik, M.I.: Tables of integrals, series and derivations. FM Publishing Company, Moscow (1969). (Russian Edition)

    Google Scholar 

  22. Johnson, K.: Contact interaction’s mechanics. Mir Publishing Company, Moscow (1989). (Russian Edition)

    Google Scholar 

  23. Aramanovich, I.G., et al.: Development of the theory of contact problems in the USSR. Nayka Publishing Company, Moscow (1976). (Russian Edition)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemza Gherdaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Citation: Gherdaoui, Hemza and Guenfoud, Salah et all. Evaluation of the Integrals of Green’s Function of Lamb’s Model used in Contact Problems. Acta Mechanica (2020).

Appendices

Appendix A

1.1 Proof of the solution’s precision by transforming the functions of the integrals by a series with only five terms of approximation

Let us bring the graphic comparison of the hypergeometric function 1F2 with its approximation to justify the precision of the results with only five terms of approximation with the following values of the considered elastic foundation with inertial properties:

$$\begin{aligned} E_{0} =250\times 10^{6}\,{\hbox {N/m}}^{2};\quad \nu _{0} =0.3;\quad \rho =1500\,{\hbox {Kg/m}}^{3};\quad t=\frac{1}{\cos \left( \varphi \right) };\quad \varphi _{\max } =\frac{\pi }{4};\;\forall m\in \left[ {1;11} \right] . \end{aligned}$$

The distance c2 (defining the half width of the square element) varies according to the size of the discretization area. For our case, we chose a square contact area with 2m long sides, so the maximum value of c2 will not exceed 0.1 m (Fig. 8).

Fig. 8
figure 8

(a) Comparison of the hypergeometric function 1F2 with its approximation according to the variation in the excitation frequencies omega when c2 = 0.1 m. (b) Comparison of the hypergeometric function 1F2 with its approximation according to the variation in the length c2 when \(\omega = 250\) Hz

Appendix B

With the help of Mathematica, we get the final formula of the Green’s function defining the vertical displacements of the surface of a half-space with inertial properties (Lamb’s model):

$$\begin{aligned} v= & {} \left( {\frac{-k\,\cos \left( {\omega \,t} \right) }{2bc\pi \,G_{0} }} \right) \times \Delta ,\\ \Delta= & {} 8\int \limits _0^{\arctan \left( {\frac{b}{c}} \right) } {\int \limits _0^{\frac{c}{2\cos \phi }} {\left[ {I_{21} \left( {r,\varphi } \right) +I_{3} \left( {r,\varphi } \right) } \right] } \,} rdrd\phi \\= & {} \mathop \sum \limits _{m=1}^{11} b_{2\times m-1} \times \left( {\frac{1}{2m}\left( {\left( {\frac{b2c2\left( {24-\left( {-24+\left( {b2^{2}+3c2^{2}} \right) k^{2}} \right) m} \right) }{6\left( {1+m} \right) }} \right) } \right. } \right. \\&\left. {\left. {-4^{-m}\left( {\frac{b2c2\left( {96-\left( {-96+\left( {b2^{2}+3c2^{2}} \right) k^{2}} \right) m} \right) }{24\left( {1+m} \right) }} \right) } \right) } \right) \\&+d_{0} \times \left( {\frac{1}{k}\times \left( {\frac{16\sqrt{b2^{2}+c2^{2}} \hbox {arctanh}\left[ {\tan \left[ {\frac{1}{2}\hbox {arctan}\left[ {\frac{b2}{c2}} \right] } \right] } \right] }{\sqrt{1+\frac{b2^{2}}{c2^{2}}} }} \right) +\left( {\frac{b2c2}{18}\left( {-72+\left( {b2^{2}+3c2^{2}} \right) k^{2}} \right) } \right) } \right) \\&+(d_{1} )\times \left\{ {\frac{\pi }{2}\times \left( \left( {-\frac{\left( {2+c2k\pi \chi } \right) }{36c2k^{3}\pi ^{2}\chi ^{3}}\left( {24\left( {24-12c2^{2}k^{2}\chi ^{2}+c2^{4}k^{4}\chi ^{4}} \right) \arctan \left[ {\frac{b2}{c2}} \right] } \right. +b2c2k^{2}\chi ^{2}\times } \right. \right. } \right. \\&\times \left[ 12\gamma \left( {-24+\left( {b2^{2}+3c2^{2}} \right) k^{2}\chi ^{2}} \right) +144\left( {3+\log \left[ 4 \right] } \right) -k^{2}\chi ^{2}\times \left( {b2^{2}\left( {19+\log \left[ {4096} \right] } \right) } \right. + \right. \\&\left. \left. { +3c2^{2}\left( {23+\log \left[ {4096} \right] } \right) } \right) +6\left( {-24+\left( {b2^{2}+3c2^{2}} \right) k^{2}\chi ^{2}} \right) \log \left[ {1+\frac{b2^{2}}{c2^{2}}} \right] \right. \\&\left. \left. \left. +12\left( {-24+\left( {b2^{2}+3c2^{2}} \right) k^{2}\chi ^{2}} \right) \log \left[ {c2k\chi } \right] \right] \right) \right) \\&+\left( {\frac{2c2^{2}k\chi }{45\pi }\left[ {b2\sqrt{1+\frac{b2^{2}}{c2^{2}}} \left( {60-\left( {2b2^{2}+5c2^{2}} \right) k^{2}\chi ^{2}} \right) +3c2\left( {-20+c2^{2}k^{2}\chi ^{2}} \right) } \right. } \right. \\&\times \left( {\log \left[ {\cos \left[ {\frac{1}{2}\arctan \left[ {\frac{b2}{c2}} \right] } \right] -\sin \left[ {\frac{1}{2}\arctan \left[ {\frac{b2}{c2}} \right] } \right] } \right] } \right. \\&\left. {\left. {\left. {\left. {-\log \left[ {\cos \left[ {\frac{1}{2}\arctan \left[ {\frac{b2}{c2}} \right] } \right] +\sin \left[ {\frac{1}{2}\arctan \left[ {\frac{b2}{c2}} \right] } \right] } \right] } \right) } \right] } \right) } \right) \\&-\left. {\mathop \sum \limits _{n=0}^{5} \frac{\left( {-\frac{b2c2\left( {\left( {b2^{2}+3c2^{2}} \right) k^{2}\left( {1+n} \right) -24\left( {3+n} \right) } \right) }{6\left( {3+n} \right) }} \right) }{\left( {1+n} \right) \times \chi ^{1+n}}} \right\} \\&+(d_{2} )\times 128^{-1}\times \left\{ \left( \frac{b2c2k^{4}}{2721600}\left[ -241920\left( {3b2^{4}+10b2^{2}c2^{2}+15c2^{4}} \right) \right. \right. \right. \\&+1080\left( {5b2^{6}+21b2^{4}c2^{2}+35b2^{2}c2^{4}+35c2^{6}} \right) k^{2}\\&\left. \left. {-(35b2^{8}+180b2^{6}c2^{2}+378b2^{4}c2^{4}+420b2^{2}c2^{6}+315c2^{8})k^{4}} \right] \right) \\&+16\left[ {4-(\frac{2c2}{3}(b2^{3}+3b2c2^{2})k^{2})(2-2\gamma +Log[4])} \right. \\&\left. {\left. {+\left( {\frac{1}{9}k^{2}\left( {24c2^{4}\arctan \left[ {\frac{b2}{c2}} \right] +b2c2\left( {-7b2^{2}-33c2^{2}+6\left( {b2^{2}+3c2^{2}} \right) \log \left[ {\left( {b2^{2}+c2^{2}} \right) k^{2}} \right] } \right) } \right) } \right) } \right] } \right\} \end{aligned}$$

where [19\(\chi =1.0723562676808107\); \(d_{0} =-0.638753325488385\); \(d_{1} =0.14255586708614507\), and \(d_{2} =-0.45897252064027794.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gherdaoui, H., Guenfoud, S., Bosakov, S.V. et al. Evaluation of the integrals of Green’s function of Lamb’s model used in contact problems. Acta Mech 231, 4145–4156 (2020). https://doi.org/10.1007/s00707-020-02755-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02755-y

Navigation