Skip to main content
Log in

Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper deals with Rayleigh wave propagation in a nonlocal thermoelastic layer, and the layer is lying over a nonlocal thermoelastic half-space. The problem is treated in the context of Eringen’s nonlocal thermoelasticity and Green–Naghdi model type III of hyperbolic thermoelasticity. The frequency equation of Rayleigh waves is derived, and different cases are also discussed. The effect of the nonlocal parameter on phase velocity, attenuation coefficient, specific loss, and penetration depth is presented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)

    MATH  Google Scholar 

  2. Eringen, A.C.: Memory dependent nonlocal elastic solids. Lett. Appl. Eng. Sci. 2(3), 145–149 (1974)

    MathSciNet  Google Scholar 

  3. Eringen, A.C.: Edge dislocation on nonlocal elasticity. Int. J. Eng. Sci. 15, 177–183 (1977)

    MATH  Google Scholar 

  4. Eringen, A.C.: A mixture theory of electromagnetism and superconductivity. Int. J. Eng. Sci 36(5/6), 525–543 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  6. Altan, B.S.: Uniqueness in the linear theory of nonlocal elasticity. Bull. Tech. Univ. Istanb. 37, 373–385 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci 10, 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  8. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Eringen, A.C.: On Rayleigh surface waves with small wave lengths. Lett. Appl. Eng. Sci. 1, 11–17 (1973)

    Google Scholar 

  10. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1984)

    MATH  Google Scholar 

  11. Pramanik, A.S., Biswas, S.: Surface waves in nonlocal thermoelastic medium with state space approach. J. Therm. Stresses 43(6), 667–686 (2020)

    Google Scholar 

  12. Biswas, S.: Surface waves in porous nonlocal thermoelastic orthotropic medium. Acta Mech. 231, 2741–2760 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Khurana, A., Tomar, S.K.: Wave propagation in nonlocal microstretch solid. Appl. Math. Model. 40, 5885–6875 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Yu Jun, Y., Tian, X.-G., Liu, X.-R.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A/Sol. 60, 238–253 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar solid half space. Ultrasonics 73, 162–168 (2017)

    Google Scholar 

  16. Biot, M.: Thermoelasticity and irreversible Thermoelasticity. J. Appl. Phys. 27, 240–253 (1956)

    MathSciNet  MATH  Google Scholar 

  17. Lord, H., Shulman, Y.: A generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    MATH  Google Scholar 

  18. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  19. Green, A.E., Naghdi, P.M.: A re-examination of the basic properties of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    MATH  Google Scholar 

  20. Green, A.E., Naghdi, P.M.: On damped heat waves in an elastic solid. J. Therm. Stress. 15, 252–264 (1992)

    Google Scholar 

  21. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Chandrasekharaih, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Google Scholar 

  23. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  24. Dwan, N.C., Chakraborty, S.K.: On Rayleigh waves in Green–Lindsay’s model of generalized thermoelastic media. Indian J. Pure Appl. Math. 20(3), 276–283 (1988)

    Google Scholar 

  25. Rossikin, Y.A., Shitikova, M.V.: Nonstationary Rayleigh waves on the thermally-insulated surfaces of some thermoelastic bodies of revolution. Acta Mech. 150(1–2), 87–105 (2001)

    MATH  Google Scholar 

  26. Singh, B., Kumari, S., Singh, J.: Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual phase lag magnetothermoelastic half space. J. Eng. Phys. Thermophys. 87(6), 1539–1547 (2014)

    Google Scholar 

  27. Biswas, S., Mukhopadhyay, B., Shaw, S.: Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J. Therm. Stress. 40(4), 403–419 (2017)

    Google Scholar 

  28. Biswas, S., Abo-Dahab, S.M.: Effect of phase-lags on Rayleigh waves in initially stressed magneto-thermoelastic orthotropic medium. Appl. Math. Model. 59, 713–727 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Abd-Alla, A.N., Al-Dawy, A.A.S.: Thermal relaxation times effect on Rayleigh waves in generalized thermoelastic media. J. Therm. Stress. 24(4), 367–382 (2001)

    Google Scholar 

  30. Wojnar, R.: Rayleigh waves in thermoelasticity with relaxation times. In: International Conference on Surface Waves in Plasma and Solids, Ohrid, Yugoslavia, Sept. 5–11, 1985, World Scientific, Singapore, (1986)

  31. Biswas, S.: Stroh analysis of Rayleigh waves in anisotropic thermoelastic medium. J. Therm. Stress. 41(5), 627–644 (2018)

    Google Scholar 

  32. Biswas, S., Mukhopadhyay, B.: Eigenfunction expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase-lags. Waves Random Complex Media 29(4), 722–742 (2019)

    MathSciNet  Google Scholar 

  33. Singhal, A., Sahu, S.A.: Transference of Rayleigh waves in corrugated orthotropic layer over a pre-stressed orthotropic half space with self-weight. Proc. Eng. 173, 972–979 (2017)

    Google Scholar 

  34. Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985)

    MATH  Google Scholar 

  35. Kolsky, H.: Stress Waves in Solids. Dover Press, New York (1963)

    MATH  Google Scholar 

  36. Nowinski, J.L.: Theory of Thermoelasticity with Applications. Sijthoff and Noordhoff International Publishing, Alphen aan den Rijn, Netherlands, Mechanics of Surface Structures (1978)

    MATH  Google Scholar 

  37. Nayfeh, A., Nemat-Nasser, S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53–69 (1971)

    MATH  Google Scholar 

  38. Agarwal, V.K.: On surface waves in generalized thermoelasticity. J. Elast. 8, 171–177 (1978)

    MATH  Google Scholar 

  39. Biswas, S.: Fundamental solution of steady oscillations equations in nonlocal thermoelastic medium with voids. J. Therm. Stress. 43(3), 284–304 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Biswas.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \alpha _{1}= & {} \delta _{1} \sin \eta _{1} H+\cos \eta _{1} H-\frac{e_{1} }{e_{3} }\left( {\delta _{3} \sin \eta _{3} H+\cos \eta _{3} H} \right) ,\\ \alpha _{2}= & {} \delta _{2} \sin \eta _{2} H+\cos \eta _{2} H-\frac{e_{2} }{e_{3} }\left( {\delta _{3} \sin \eta _{3} H+\cos \eta _{3} H} \right) ,\\ \gamma _{1}= & {} c_{1} \cos \eta _{1} H+d_{1} \delta _{1} \sin \eta _{1} H-\frac{e_{1} }{e_{3} }\left( {c_{3} \cos \eta _{3} H+d_{3} \delta _{3} \sin \eta _{3} H} \right) ,\\ \gamma _{2}= & {} c_{2} \cos \eta _{2} H+d_{2} \delta _{2} \sin \eta _{2} H-\frac{e_{2} }{e_{3} }\left( {c_{3} \cos \eta _{3} H+d_{3} \delta _{3} \sin \eta _{3} H} \right) ,\\ l_{1}= & {} \left( {ikc_{1} +\delta _{1} \eta _{1} } \right) \cos \eta _{1} H+\left( {ikd_{1} \delta _{1} -\eta _{1} } \right) \sin \eta _{1} H\\&-\frac{e_{1} }{e_{3} }\left[ {\left( {ikc_{3} +\delta _{3} \eta _{3} } \right) \cos \eta _{3} H+\left( {ikd_{3} \delta _{3} -\eta _{3} } \right) \sin \eta _{3} H} \right] ,\\ l_{2}= & {} \left( {ikc_{2} +\delta _{2} \eta _{2} } \right) \cos \eta _{2} H+\left( {ikd_{2} \delta _{2} -\eta _{2} } \right) \sin \eta _{2} H\\&-\frac{e_{2} }{e_{3} }\left[ {\left( {ikc_{3} +\delta _{3} \eta _{3} } \right) \cos \eta _{3} H+\left( {ikd_{3} \delta _{3} -\eta _{3} } \right) \sin \eta _{3} H} \right] ,\\ l_{3}= & {} iky_{1} -k_{1} ,\\ l_{4}= & {} iky_{2} -k_{2} ,\\ l_{5}= & {} iky_{3} -k_{3} ,\\ p_{1}= & {} \left( {ikm_{5} -e_{1} +d_{1} \eta _{1} \delta _{1} } \right) \cos \eta _{1} H+\left( {-c_{1} \eta _{1} +ikm_{5} \delta _{1} -f_{1} \delta _{1} } \right) \sin \eta _{1} H\\&-\frac{e_{1} }{e_{3} }\left[ {\begin{array}{l} \left( {ikm_{5} -e_{3} -d_{3} \delta _{3} \eta _{3} } \right) \cos \eta _{3} H \\ +\left( {-c_{3} \eta _{3} +ikm_{5} \delta _{3} -f_{3} \delta _{3} } \right) \sin \eta _{3} H \\ \end{array}} \right] ,\\ p_{2}= & {} \left( {ikm_{5} -e_{2} +d_{2} \eta _{2} \delta _{2} } \right) \cos \eta _{2} H+\left( {-c_{2} \eta _{2} +ikm_{5} \delta _{2} -f_{2} \delta _{2} } \right) \sin \eta _{2} H\\&-\frac{e_{2} }{e_{3} }\left[ {\begin{array}{l} \left( {ikm_{5} -e_{3} -d_{3} \delta _{3} \eta _{3} } \right) \cos \eta _{3} H \\ +\left( {-c_{3} \eta _{3} +ikm_{5} \delta _{3} -f_{3} \delta _{3} } \right) \sin \eta _{3} H \\ \end{array}} \right] ,\\ p_{3}= & {} ikr_{5} -k_{1} y_{1} -z_{1} ,\\ p_{4}= & {} ikr_{5} -k_{2} y_{2} -z_{2} ,\\ p_{5}= & {} ikr_{5} -k_{3} y_{3} -z_{3} ,\\ q_{1}= & {} e_{1} \cos \eta _{1} H+f_{1} \delta _{1} \sin \eta _{1} H-\frac{e_{1} }{e_{3} }\left( {e_{3} \cos \eta _{3} H+f_{3} \delta _{3} \sin \eta _{3} H} \right) ,\\ q_{2}= & {} e_{2} \cos \eta _{2} H+f_{2} \delta _{2} \sin \eta _{2} H-\frac{e_{2} }{e_{3} }\left( {e_{3} \cos \eta _{3} H+f_{3} \delta _{3} \sin \eta _{3} H} \right) ,\\ P_{1}= & {} \gamma _{2} \left\{ {-l_{3} \left( {p_{4} z_{3} -z_{2} p_{5} } \right) +l_{4} \left( {p_{3} z_{3} -z_{1} p_{5} } \right) +l_{5} \left( {p_{3} z_{2} -z_{1} p_{4} } \right) } \right\} \\&+y_{1} \left\{ {l_{2} \left( {z_{3} p_{4} -z_{2} p_{5} } \right) +l_{4} \left( {-p_{2} z_{3} +q_{2} p_{5} } \right) -l_{5} \left( {-p_{2} z_{2} +p_{4} q_{2} } \right) } \right\} \\&-y_{2} \left\{ {l_{2} \left( {z_{3} p_{3} -z_{1} p_{5} } \right) +l_{3} \left( {-p_{2} z_{3} +p_{5} q_{2} } \right) -l_{5} \left( {-p_{2} z_{1} +q_{2} p_{3} } \right) } \right\} \\&+y_{3} \left\{ {l_{2} \left( {p_{3} z_{2} -p_{4} z_{1} } \right) +l_{3} \left( {-p_{2} z_{2} +p_{4} q_{2} } \right) -l_{4} \left( {-p_{2} z_{1} +p_{3} q_{2} } \right) } \right\} ,\\ P_{2}= & {} \gamma _{1} \left\{ {-l_{3} \left( {p_{4} z_{3} -z_{2} p_{5} } \right) +l_{4} \left( {p_{3} z_{3} -z_{1} p_{5} } \right) +l_{5} \left( {p_{3} z_{2} -z_{1} p_{4} } \right) } \right\} \\&+y_{1} \left\{ {l_{1} \left( {z_{3} p_{4} -z_{2} p_{5} } \right) +l_{4} \left( {-p_{1} z_{3} +q_{1} p_{5} } \right) -l_{5} \left( {-p_{1} z_{2} +p_{4} q_{1} } \right) } \right\} \\&-y_{2} \left\{ {l_{1} \left( {z_{3} p_{3} -z_{1} p_{5} } \right) +l_{3} \left( {-p_{1} z_{3} +p_{5} q_{1} } \right) -l_{5} \left( {-p_{1} z_{1} +q_{1} p_{3} } \right) } \right\} \\&+y_{3} \left\{ {l_{1} \left( {p_{3} z_{2} -p_{4} z_{1} } \right) +l_{3} \left( {-p_{1} z_{2} +p_{4} q_{1} } \right) -l_{4} \left( {-p_{1} z_{1} +p_{3} q_{1} } \right) } \right\} , \\ P_{3}= & {} \gamma _{1} \left\{ {l_{2} \left( {p_{4} z_{3} -z_{2} p_{5} } \right) +l_{4} \left( {-p_{2} z_{3} +q_{2} p_{5} } \right) -l_{5} \left( {-p_{2} z_{2} +q_{2} p_{4} } \right) } \right\} \\&-\gamma _{2} \left\{ {l_{1} \left( {z_{3} p_{4} -z_{2} p_{5} } \right) +l_{4} \left( {-p_{1} z_{3} +q_{1} p_{5} } \right) -l_{5} \left( {-p_{1} z_{2} +p_{4} q_{1} } \right) } \right\} \\&-y_{2} \left\{ {l_{1} \left( {z_{3} p_{2} +q_{2} p_{5} } \right) -l_{2} \left( {-p_{1} z_{3} +p_{5} q_{1} } \right) -l_{5} \left( {p_{1} q_{2} -q_{1} p_{2} } \right) } \right\} \\&+y_{3} \left\{ {l_{1} \left( {-p_{2} z_{2} +p_{4} q_{2} } \right) -l_{2} \left( {-p_{1} z_{2} +p_{4} q_{1} } \right) -l_{4} \left( {p_{1} q_{2} -p_{2} q_{1} } \right) } \right\} , \\ P_{4}= & {} \gamma _{1} \left\{ {l_{2} \left( {p_{3} z_{3} -z_{1} p_{5} } \right) +l_{3} \left( {-p_{2} z_{3} +q_{2} p_{5} } \right) -l_{5} \left( {-p_{2} z_{1} +q_{2} p_{3} } \right) } \right\} \\&-\gamma _{2} \left\{ {l_{1} \left( {z_{3} p_{3} -z_{1} p_{5} } \right) +l_{3} \left( {-p_{1} z_{3} +q_{1} p_{5} } \right) -l_{5} \left( {-p_{1} z_{1} +p_{3} q_{1} } \right) } \right\} \\&-y_{1} \left\{ {l_{1} \left( {-z_{3} p_{2} +q_{2} p_{5} } \right) -l_{2} \left( {-p_{1} z_{3} +p_{5} q_{1} } \right) -l_{5} \left( {p_{1} q_{2} -q_{1} p_{2} } \right) } \right\} \\&+y_{3} \left\{ {l_{1} \left( {-p_{2} z_{1} +p_{3} q_{2} } \right) -l_{2} \left( {-p_{1} z_{1} +p_{3} q_{1} } \right) -l_{3} \left( {p_{1} q_{2} -p_{2} q_{1} } \right) } \right\} , \\ P_{5}= & {} \gamma _{1} \left\{ {l_{2} \left( {p_{3} z-p_{4} z_{1} } \right) +l_{3} \left( {-p_{2} z_{2} +q_{2} p_{4} } \right) -l_{4} \left( {-p_{2} z_{1} +q_{2} p_{3} } \right) } \right\} \\&-\gamma _{2} \left\{ {l_{1} \left( {z_{3} p_{2} -p_{4} z_{1} } \right) +l_{3} \left( {-p_{1} z_{2} +q_{1} p_{4} } \right) -l_{4} \left( {-p_{1} z_{1} +p_{3} q_{1} } \right) } \right\} \\&-y_{1} \left\{ {l_{1} \left( {-z_{2} p_{2} +q_{2} p_{4} } \right) -l_{2} \left( {-p_{1} z_{2} +p_{4} q_{1} } \right) -l_{4} \left( {p_{1} q_{2} -q_{1} p_{2} } \right) } \right\} \\&+y_{2} \left\{ {l_{1} \left( {-p_{2} z_{1} +p_{3} q_{2} } \right) -l_{2} \left( {-p_{1} z_{1} +p_{3} q_{1} } \right) -l_{3} \left( {p_{1} q_{2} -p_{2} q_{1} } \right) } \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S. Rayleigh waves in a nonlocal thermoelastic layer lying over a nonlocal thermoelastic half-space. Acta Mech 231, 4129–4144 (2020). https://doi.org/10.1007/s00707-020-02751-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02751-2

Navigation