Skip to main content
Log in

Numerical Modeling of Plastic Deformation of Unidirectionally Reinforced Composites

  • Published:
Mechanics of Composite Materials Aims and scope

A technique for the numerical homogenization of plastic deformation of unidirectionally reinforced composites is developed. A modification of Prandtl–Reuss theory that takes into account the influence of the first invariant of stress tensor is used as governing relations for an equivalent orthotropic material. The isotropic hardening is described by a function depending on the work of plastic deformation. A micromechanical analysis is performed on a representative cell by the finite-element method for the general case of triaxial stress state. Deformation diagrams and yield surfaces for carbon fiber plastics with a square packaging scheme of fibers are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. Hill, The Mathematical Theory of Plasticity, Oxford: Oxford Univ. Press (1950).

    Google Scholar 

  2. M. Vogler, R. Rolfes, and P. P. Camanho, “Modeling the inelastic deformation and fracture of polymer. Part I: Plasticity model,” Mech. Mater, 59, 50-64 (2013).

    Article  Google Scholar 

  3. K. Naumenko and H. Altenbach, “Modeling high temperature materials behavior for structural analysis. Part I: Continuum mechanics foundations and constitutive models,” Cham: Springer: Advanced Structured Materials, 28 (2016). DOI: 10.1007/978-3-319-31629-1.

  4. A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibers. Part I: Constitutive modelling,” Int. J. Solids Struct., 50, 1897-1905 (2013).

    Article  CAS  Google Scholar 

  5. A. R. Melro, P. P. Camanho, F. M. Andrade Pires, and S. T. Pinho, “Micromechanical analysis of polymer composites reinforced by unidirectional fibers. Part II: Micromechanical analyses,” Int. J. Solids Struct., 50, 1906-1915 (2013).

    Article  CAS  Google Scholar 

  6. F. P. Van der Meer, “Micromechanical validation of a mesomodel for plasticity in composites,” Europ. J. Mech. A/Solids., 60, 58-69 (2016).

    Article  Google Scholar 

  7. R. Bedzra, J. W. Reese, and J. W. Simon, “Meso-macro modeling of anisotropic metallic composites within the framework of multisurface plasticity,” Int. J. Solids Struct., 120, 186-198 (2017).

    Article  CAS  Google Scholar 

  8. Y. J. Cho, W. J. Lee, and Y. H. Park, “Effect of boundary conditions on plasticity and creep behavior analysis of particle reinforced composites by representative volume element approach,” Comput. Mater. Sci., 100, Part A, 67-75 (2015).

  9. C. Hoffarth, S. D. Rajan, R. K. Goldberg, D. Revilock, K. S. Carney, P. DuBois, and G. Blankenhorn, “Implementation and validation of a three-dimensional plasticity-based deformation model for orthotropic composites,” Composites: Part A, 91, 336-350 (2016).

    Article  Google Scholar 

  10. Y. K. Khdir, T. Kanit, F. Zaїri, and M. Naїt-Abdelaziz, “Computational homogenization of elastic-plastic composites,” Int. J. Solids Struct., 50, 2829-2835 (2013).

    Article  Google Scholar 

  11. T. Laux, K. W. Gan, J. M. Dulieu-Barton, and O. T. Thomsen, “A simple nonlinear constitutive model based on nonassociative plasticity for UD composites: Development and calibration using a modified arcan fixture,” Int. J. Solids Struct., 162, 135-147 (2019).

    Article  Google Scholar 

  12. S. Marfia and E. Sacco, “Computational homogenization of composites experiencing plasticity, cracking and debonding phenomena,” Comput. Methods Appl. Mech. Eng., 304, 319-341 (2016).

    Article  Google Scholar 

  13. G. J. Dvorak, “Transformation field analysis of inelastic composite materials,” Proc. R. Soc. London, Ser. A, 437, 311-327 (1992).

  14. L. R. Meza, J. M. J. Schormans, J. J. C. Remmers, and V. S. Deshpande, “Shear response of 3D non-woven carbon fiber reinforced composites,” J. Mech. Phys. Solids., 125, 276-297 (2019).

    Article  CAS  Google Scholar 

  15. B. Nedjar, “Plasticity-based modeling of fiber/matrix debonding in unidirectional composites,” Compos. Struct., 108, 41-48 (2014).

    Article  Google Scholar 

  16. Z. Hashin, “On the elastic behaviour of fiber reinforced materials of arbitrary transverse phase geometry,” J. Mech. Phys. Solids., 13, No. 3, 119-134 (1965).

    Article  Google Scholar 

  17. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-574 (1973).

    Article  Google Scholar 

  18. H. Singh, M. Gupta, and P. Mahajan, “Reduced order multiscale modeling of fiber reinforced polymer composites including plasticity and damage,” Mech. Mater., 111, 35-56 (2017).

    Article  Google Scholar 

  19. L. Zhang and W. Yu, “Variational asymptotic homogenization of elastoplastic composites,” Compos. Struct., 133, 947-958 (2015).

    Article  Google Scholar 

  20. B. I. Miled, I. L. Doghri, L. Brassart, and L. Delannay, “Micromechanical modeling of coupled viscoelastic-viscoplastic composites based on an incrementally affine formulation,” Int. J. Solids Struct., 50, 1755-1769 (2013).

    Article  Google Scholar 

  21. D. Tsalis, T Baxevanis., G. Chatzigeorgiou, and N Charalambakis, “Homogenization of elastoplastic composites with generalized periodicity in the microstructure,” Int. J. Plast., 51, 161-187 (2013).

  22. Q.-C. He and Z.-Q. Feng, “Homogenization of layered elastoplastic composites: Theoretical results,” Int. J. Non Linear Mech., 47, 367-376 (2012).

    Article  Google Scholar 

  23. A. F. Fedotov, “Hybrid model for homogenization of the elastoplastic properties of isotropic matrix composites,” Mech. Compos. Mater., 53, No. 3, 361-372 (2017).

    Article  CAS  Google Scholar 

  24. R. M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York-Chichester-Brisbane-Toronto (1979)

    Google Scholar 

  25. R. V. Mises, “Mechanik der plastischen Formänderung von Kristallen,” Z. Angew. Math. Mech., 8, 161-185 (1928). DOI: https://doi.org/10.1002/zamm.19280080302.

    Article  Google Scholar 

  26. J. Małachowski, G. L’vov, and S. Daryazadeh, “Numerical prediction of the parameters of a yield criterion for fibrous composites,” Mech. Compos. Mater., 53, No. 5, 589-600 (2017).

    Article  Google Scholar 

  27. P. J. Hine, R. A. Duckett, A. S. Kaddour, M. J. Hinton, and G. M. Wells, “The effect of hydrostatic pressure on the mechanical properties of glass fiber/epoxy unidirectional composites,” Composites: Part A, 36, No. 2, 279-289 (2005).

  28. S Darya Zadeh. and G. I. L’vov, “Numerical procedure of determining the effective mechanical characteristics of an aligned fiber composite,” Strength Mater., 47, No. 4, 536-543 (2015).

  29. G. I. Lvov and O. A. Kostromitskaya, “Two-level computation of elastic characteristics of woven composites,” Mech. Compos. Mater., 54, No. 5, 577-590 (2018).

    Article  Google Scholar 

  30. A. Gilat, R. K. Goldberg, and G. D. Roberts, “Strain rate sensitivity of epoxy resin in tensile and shear loading,” NASA/TM-2005-213595. URL: https: // ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050179433.pdf

  31. V. A. Il’in and E. G. Poznyak, Linear Algebra [in Russian], – M., Nauka (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. L’vov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 1, pp. 3-26, January-February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L’vov, G.I., Kostromitskaya, O.A. Numerical Modeling of Plastic Deformation of Unidirectionally Reinforced Composites. Mech Compos Mater 56, 1–14 (2020). https://doi.org/10.1007/s11029-020-09856-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09856-8

Keywords

Navigation