Skip to main content
Log in

Development of a Wear-Resistant Extrudable Composite Material Based on an Ultrahigh-Molecular Polyethylene with Predetermined Properties

  • Published:
Mechanics of Composite Materials Aims and scope

The necessary composition and content of fillers of a multicomponent extrudable composition based on an ultrahigh-molecular polyethylene (UHMPE) with specified mechanical and tribotechnical characteristics are determined. For the purpose of effective and operational development of extrudable composites based on an UHMPE, a minimum amount of experimental data and an algorithm for determining the governing parameters (formulations) is used, which give the needed (restrictive) values for the effective characteristics of multicomponent polymer-polymer compositions. This allows one to secure the tribological, mechanical and technological properties required. The limited amount of experimental data for the relation between the effective properties and the formulation required is supplemented by values calculated using the Lagrange interpolation polynomial. The relations obtained are represented as surfaces and the corresponding level lines. The imposition of level lines allows one to determine the area that meets the requirements specified and to find the formulation necessary for it. On the basis of this algorithm, the optimum formulation of a three-component mixture consisting of an UHMPE, a high-density polyethylene grafted with maleic anhydride, and a polypropylene having tribomechanical properties at the level of an UHMPE, but with a melt flow-behavior index suitable for 3D printing by fused deposition modeling, is determined. According to the formulation found, samples were made and tested, and they completely satisfied the properties prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. S. M. Kurtz, UHMWPE Biomaterials Handbook, Amesterdam: Elsevier Science (2009).

    Google Scholar 

  2. G. E. Selytin, Yu. Yu. Gavrilov, E. N. Voskresenskaya, V. A. Zakharov, V. E. Nikitin, and V. A. Poluboyarov, “Composite materials on the basis of ultrahigh-molecular polyethylene: properties and prospects of employment,” Khimiya v Interes. Ustoich. Razv., 18, No. 3, 375-388 (2010).

    Google Scholar 

  3. E. M. Brach Del Prever, A. Bistolfi, P. Bracco, and С. Luigi, “UHMWPE for arthroplasty: past or future?” J. Orthop. Trauma, 10, No. 1, 1-8 (2009).

    Article  Google Scholar 

  4. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Huic, “3D printing of polymer matrix composites: A review and prospective,” Composites: Part B, 110, 442-458 (2017).

    Article  CAS  Google Scholar 

  5. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, D. and Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Composites: Part B, 143, 172-196 (2018).

  6. A. Gupta, G. Tripathi, D. Lahiri, and K. Balani, “Compression molded ultra high molecular weight polyethylenehydroxyapatite-aluminum oxide-carbon nanotube hybrid composites for hard tissue replacement,” J. Mater. Sci. Technol., 29, No. 6, 514-522 (2013).

    Article  CAS  Google Scholar 

  7. N. Chang, A. M. Naik, and H. K. Khaira, “Development of UHMWPE modified PP/PET blends and their mechanical and abrasive wear behavior,” Polym. Compos., 5, 267-272 (2007).

    Google Scholar 

  8. R. A. Borges, D. Choudhury, and M. Zou, “3D printed PCU/UHMWPE polymer blend for artificial knee meniscus,” Tribol. Int., 122, 1-7 (2018).

    Article  Google Scholar 

  9. M. S. Ramli, M. S. Wahab, M. Ahmad, and A. S. Bala, “FDM Preparation of bio-compatible UHMWPE polymer for artificial implant,” J. Eng. Appl. Sci., 11, No. 8, 5473-5480 (2016).

    Google Scholar 

  10. M. Xie, X. Liu, and H. Li, “Influence of polyethylene glycol-containing additives on extrusion of ultrahigh molecular weight polyethylene/polypropylene blend,” J. Eng. Appl. Sci., 100, No. 2, 1282-1288 (2006).

    CAS  Google Scholar 

  11. S. V. Panin, L. A. Kornienko, V. O. Alexenko, L. R. Ivanova, and S. V. Shil’ko, “Extrudable composites based on UHMWPE: Prospects of application in additive technologies,” Nanosci. Technol., 8, No. 2, 85-94 (2017).

    Google Scholar 

  12. S. Changhui, H. Aibing, Y. Yongqiang, W. Di, and Y. Jia-kuo, “Customized UHMWPE tibial insert directly fabricated by selective laser sintering,” Int J. Adv. Manuf. Technol., 85, 1217-1226 (2016).

    Article  Google Scholar 

  13. Y. Khalil, A. Kowalski, and N. Hopkinson, “Influence of laser power on tensile properties and material characteristics of laser-sintered UHMWPE,” Manufacturing Rev., 15, No. 3, 1-9 (2016).

    Google Scholar 

  14. M. S. Wahab, S. I. Hussain, S. Ja’afar, M. S. Ramli, K. N. Talib, and M. N. Hamid, “Laser sintering characteristic of biomaterial UHMWPE for additive manufacturing process,” Australian J. Basic and Appl. Sci., 24, No. 8, 385-391 (2014).

    Google Scholar 

  15. Y. Zhang, L. Hao, M. M. Savalani, R. A. Harris, L. Di Silvio, and K. E. Tanner, “In vitro biocompatibility of hydroxyapatite-reinforced polymer composites manufactured by selective laser sintering,” J. Biomed. Mater. Res., 1019-1027 (2008).

  16. S. A. Mirsalehi, A. Khavandi, Sh. Mirdamadi, and M. R. Naimi-Jamal, “Nanomechanical and tribological behavior of hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposites for biomedical applications,” J. Appl. Polym. Sci., 132, No. 23, 42052 (2015).

    Article  Google Scholar 

  17. S. V. Panin, L. A. Kornienko, V. O. Aleksenko, D. G. Buslovich, and Yu. V. Dontsov, “Ekstrudable polymer–polymer composites on the basis of ultrahigh-molecular polyethylene (UHMPE),” Sborka Mashinostr. Priborostr., No. 1, 16-23 (2018).

  18. S. V. Panin, D. G. Buslovich, L. A. Kornienko, V. O Alexenko, Yu. V. Dontsov, and S. V. Shil’ko, “Structure, as well as the tribological and mechanical properties, of extrudable polymer-polymeriс UHMWPE composites for 3D printing,” J. Frict. Wear., 40, No. 2, 107-115 (2019).

    Article  Google Scholar 

  19. K. A.-M. Dzhasheev and Z. A.-M. Dzhasheeva, “Nomogram method of analyzing of results of multifactorial experiment,” Sovrem. Naukoemk. Tekhnol., No. 8, 19-28 (2008). URL: https://top-technologies.ru/pdf/2008/8/3.pdf (reference date 18.04.2019).

  20. J. Zhang, J. Wang, J. Lin, Q. Guo, K. Chen, and L. Ma, “Multiobjective optimization of injection molding process parameters based on Opt LHD, EBFNN, and MOPSO,” Int. J. Adv. Manuf. Technol., 85, 9-12 (2015).

    Article  Google Scholar 

  21. D. L. McDowell and D. Backman, “Simulation-assisted design and accelerated insertion of materials,” Computational Methods for Microstructure-Property Relationships,” 617-647 (2011).

  22. D. S. Sorokin and A. M. Danilov, “Metodika of optimization technique of structure and properties of composite materials,” Sovrem. Nauchn. Issled. Innov., Ch. 1, No. 5, (2014). URL: http://web.snauka.ru/issues/2014/05/34828 (reference date 27.03.2019)

  23. M. Mayda, “An efficient simulation-based search method for reliability-based robust design optimization of mechanical components,” Mechanika, 23, No. 5, 696-702 (2017).

    Article  Google Scholar 

  24. P. V. Afonin, “Optimization system on the basis of imitation modeling, genetic algorithm, and neural network metamodels,” Int. J. Information Technologies and Knowledge, 5 (2007). URL: http://www.foibg.com/conf/ITA2007/KDS2007/PDF/KDS07-Afonin.pdf (reference date 27.03.2019)

  25. M. H. I. Ibrahim, N. Muhamad, A. B. Sulong, K. R. Jamaludin, N. H. M. Nor, S. Ahmad, and H. Zakaria, “Parameter optimization towards highest micro MIM density by using Taguchi method,” Key Eng. Mater., 443, 705-710 (2010).

    Article  CAS  Google Scholar 

  26. R. A. Raj and M. D. Anand, “Modeling and prediction of mechanical strength in electron beam welded dissimilar metal joints of stainless steel 304 and copper using grey relation analysis,” Int. J. Eng. Technol., 7, No. 3.6, 198-201 (2018).

    Article  CAS  Google Scholar 

  27. Y-T. Jou, W-T. Lin, W-C. Lee, and T-M. Yeh, “Integrating the Taguchi method and response surface methodology for process parameter optimization of the injection molding,” Appl. Math. Inform. Sci., 8, No. 3, 1277-1285 (2014).

    Article  Google Scholar 

  28. A. N. Gaidadin, S. A. Efremova, and A. V. Nistratov, “Optimization methods in the technological practice,” Volg. GTU, Volgograd (2008).

    Google Scholar 

  29. N. Yu. Anokhin, N. Yu. Matolygina, B. A. Lyukshin, and P. A. Lyukshin, “Computer design of filled polymer composition with required deformation and strength properties,” Mekh. Kompoz. Mater. Konstr., 15, No. 4, 600-609 (2009).

    Google Scholar 

  30. S. A. Bochkareva, N. Yu. Grishaeva, B. A. Lyukshin, P. A. Lyukshin, N. Yu. Matolygina, and I. L. Panov, “Obtaining of specified effective mechanical, thermal, and electrical characteristics of composite filled with dispersive materials,” Inorganic Materials: Appl. Res., 8, No. 5, 651-661 (2017).

    Article  Google Scholar 

  31. S. A. Bochkareva, N. Yu. Grishaeva, B. A. Lyukshin, P. A. Lyukshin, N. Yu. Matolygina, S. V. Panin, and Yu. A. Reutov, “A unified approach to determining the effective physicomechanical characteristics of filled polymer composites based on variational principles,” Mech. Compos. Mater., 54, No. 6, 775-788 (2019)

    Article  Google Scholar 

  32. S. V. Panin, N. Yu. Grishaeva, P. A. Lyukshin, B. A. Lyukshin, I. L. Panov, S. A. Botchkareva, N. Yu. Matolygina, and V. O. Aleksenko, “Obtaining formulations for compositions with given properties on the basis of ultrahigh-molecular polyethylene,” Perspekt. Mater., No. 10, 5-14 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bochkareva.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 1, pp. 27-42, January-February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkareva, S.A., Grishaeva, N.Y., Buslovich, D.G. et al. Development of a Wear-Resistant Extrudable Composite Material Based on an Ultrahigh-Molecular Polyethylene with Predetermined Properties. Mech Compos Mater 56, 15–26 (2020). https://doi.org/10.1007/s11029-020-09857-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09857-7

Keywords

Navigation