Skip to main content
Log in

Low-Velocity Impact Tests on Basalt Fiber/Polypropylene Core Honeycomb Sandwich Composites

  • Published:
Mechanics of Composite Materials Aims and scope

The low-velocity impact behavior of polypropylene- core-based sandwich composites reinforced with basalt/epoxy facesheets was investigated by drop-weight impact tests. The impact resistance of composite samples was characterized for various impact energies according to ASTM standards. Also, the effect of facesheet thickness was explored, and the failure and fracture surfaces around the impacted region were analyzed. It was found that the thickness of facesheets played an important role in the impact properties of the honeycombs. Their residual deformation after the impact tests increased as the impact energy grew, but decreased when the number of facesheet layers increased with reducing the penetration depth and perforation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Chen, S. Hou, K. Fu, X. Han, and L. Ye, “Low-velocity impact response of composite sandwich structures: Modelling and experiment,” Compos. Struct., 168, 322–334 (2017).

    Article  Google Scholar 

  2. S. Rao, K. Jayaraman, and D. Bhattacharyya, “Short fibre reinforced cores and their sandwich panels: Processing and evaluation,” Compos. Part A: App. Sci. Manuf., 42, No.9, 1236-1246 (2011).

  3. S. Abrate, “Impact on composite structures,” Cambridge University Press, New York (1998)

  4. I. Taraghi, A. Fereidoon, and F. Taheri-Behrooz, “Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures,” Mater. Des., 53, 152-158 (2014).

    Article  CAS  Google Scholar 

  5. F. Taheri-Behrooz, M. M. Shokrieh, and I. Yahyapour, “Effect of stacking sequence on failure mode of fiber metal laminates under low-velocity impact,” I. Iran Polym. J., 23, 147–152 (2014).

    Article  CAS  Google Scholar 

  6. M. Shokrieh, F. Taheri-Behrooz, H. Haftchenari, and M. Mozafari, “Size effect on the damaged areas of glass/epoxy structures under low-velocity impact,” Mech. Adv. Compos. Struct.↱, 1,No.2, 81-85 (2014).

  7. V. Tita, J. de Carvalho, and D. Vandepitte, “Failure analysis of low-velocity impact on thin composite laminates: Experimental and numerical approaches,” Compos. Struct., 83, 413-428 (2008).

    Article  Google Scholar 

  8. S. Sánchez-Sáez, E. Barbero, and C. Navarro, “Compressive residual strength at low temperatures of composite lami­nates subjected to low-velocity impacts,” Compos. Struct., 85, 226-232 (2008).

    Article  Google Scholar 

  9. E. Wu and W. S. Jiang, “Axial crush of metallic honeycombs,” Int. J Impact. Eng., 19,439-56 (1997).

    Article  Google Scholar 

  10. G. Petrone, S. Rao, S. De Rosa, B. R Mace, F. Franco, and D. Bhattacharyya, “Behaviour of fibre-reinforced honeycomb core under low-velocity impact loading,” Compos. Struct., 100, 356-362 (2013).

  11. U. Caliskan and M. K. Apalak, “Low-velocity bending impact behavior of foam core sandwich beams: Experimental,” Composites: PartE: Eng., 112, 158-175 (2017).

    Article  CAS  Google Scholar 

  12. K. Lauraitis, “STP723-EB fatigue of fibrous composite materials,” West Conshohocken, FA: ASTM International (1981). https://doi.org/10.1520/STP723-EB

    Book  Google Scholar 

  13. M. D. Rhodes, “Impact fracture of composite sandwich structures,” ProcASME/AJAA/SAE, 16th Struct., Struct. Dyn. Mater. Conf, 311-316 (1975).

  14. O. Balcı, O. Çoban, M. Ö. Bora, E. Akagiinduz, and E.B. Yalçin, “Experimental investigation of single and repeated impacts for repaired honeycomb sandwich structures,” Mater. Sci. Eng. A, 682, 23-30 (2017).

    Article  Google Scholar 

  15. A. McCracken and P. Sadeghian, “Partial-composite behavior of sandwich beams composed of fiberglass facesheets and woven fabric core,” Thin-Walled Struct., 131, (805-815) 2018.

  16. J. Sim, C. Park, and D. Y Moon, “Characteristics of basalt fibre as a strengthening material for concrete structures,” Compos Part B: Eng., 36, 504-512 (2005).

  17. M Bulut, “Mechanical characterization of basalt/epoxy composite laminates containing graphene nanopellets,” Compos B. Eng., 122,71-78 (2017).

  18. V. Lopresto, C. Leone, and D. I Iorio, “Mechanical characterisation of basalt fibre reinforced plastic,” Compos. B: Eng., 42,717-23 (2011).

  19. T Czigany, “Special manufacturing and characteristics of basalt fiber-reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study,” Compos. Sci. Technol, 66, No.l6, 3210-3220 (2006).

  20. Q. Liu, H. S. Giffard, M. T. Shaw, A. M. McDonnell, and R. S. Pamas, “Preliminary investigation of basalt fiber composite properties for applications in transportation. The official newsletter of the international institute for FRP in construction,” 2, 6-8 (2005).

  21. M. T Kim, M. H. Kim, K. Y Rhee, and S. J Park, “Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites,” Compos. B: Eng., 42, 499-504 (2011).

  22. T. Deák, T. Czigány, P. Támas, and C. S. Németh, “Enhancement of interfacial properties of basalt fiber-reinforced nylon 6 matrix composites with silane coupling agents,” Exp. Polym. Lett., 4, 590-598. (2010).

    Article  Google Scholar 

  23. J. S. Szabo and T. Czigany, “Static fracture and failure behavior of aligned discontinuous mineral fiber-reinforced polypropylene composites,” Polym. Test., 22, 711-719 (2003).

    Article  CAS  Google Scholar 

  24. Q. Liu, M. T. Shaw, A. M. McDonnell, and R. S. Pamas, “Investigation of basalt fiber composites mechanical properties for application in transportation,” Polym. Compos., 27,41-48 (2006).

    Article  Google Scholar 

  25. X Wang, “Low-velocity impact properties of 3D woven basalt/aramid hybrid composites” Compos. Sci. Technol., 68, 444-450 (2008).

  26. M. T. Dehkordi, H. Nosraty, M. M. Shokrieh, G. Minak, and D. Ghelli, “Low-velocity impact properties of intraply hybrid composites based on basalt and nylon woven fabrics,” Mater. Des., 31, 3835-3844 (2010).

    Article  CAS  Google Scholar 

  27. J. E. Mcintyre, Synthetic fibers: nylon, polyester, acrylic, polyolefin. Woodhead Publishing, CRC Press. Boca Raton­ Boston-Newyork-Washington, DC-Cambridge-England (2005)

  28. M. V. Hosur, M. Abdullah, and S. Jeelani, “Manufacturing and low-velocity impact characterization of hollow integrated core sandwich composites with hybrid face sheets,” Compos. Struct., 65, I 03-115 (2004).

  29. G. B. Chai and P. Manikandan, “Low-velocity impact response of fibre-metal laminates-A review,” Compos. Struct., 107, 363-381 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bulut.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 1, pp. 177-190, January- February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, M. Low-Velocity Impact Tests on Basalt Fiber/Polypropylene Core Honeycomb Sandwich Composites. Mech Compos Mater 56, 121–130 (2020). https://doi.org/10.1007/s11029-020-09866-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09866-6

Keywords

Navigation