Skip to main content
Log in

Failure of Polymer Beams Reinforced with Glass Fibers

  • Published:
Mechanics of Composite Materials Aims and scope

The present paper deals with the four-point bending of polyvinyl chloride beams reinforced with glass fiber clusters. The clusters, treated as orthotropic materials, were arranged periodically along the longitudinal axis of beams. The load-carrying capacity of the beams was estimated by two methods. In the first method, the beam strength was assessed using the Max-Stress, Max-Strain, Tsai–Wu, Inverse Tsai–Wu, and Hashin failure criteria. In the second one, the anisotropic Hill potential theory was employed to locally decrease the stiffness at any point of the whole structure. An analysis revealed that the Hill theory better described the true behavior of the beams at large deformations. It is also concluded that the toughness at fiber borders affects the total failure load considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ch. Dong, “Uncertainties in flexural strength of carbon/glass-fiber-reinforced hybrid epoxy composites,” Composites, Part B, 98, 176-181 (2016).

  2. T. Sawada and T. Kusaka, “Strength predictions by applied effective volume theory in short glass-fiber-reinforced plastics,” Polymer Testing, 62, 143-153 (2017).

    Article  CAS  Google Scholar 

  3. H. Xin, Y. Liu, A. S. Mosallam, J. He, and A. Du, “Evaluation on material behaviors of pultruded glass-fiber-reinforced polymer (GFRP) laminates,” Composite Structures, 182, 283-300 (2017).

    Article  Google Scholar 

  4. M. Kalantari, Ch. Dong, and I. J. Davies, “Multi-objective robust optimization of multi-directional carbon/glass-fiber-reinforced hybrid composites with manufacture related uncertainties under flexural loading,” Composite Structures, 182, 132-142 (2017).

    Article  Google Scholar 

  5. Z. Zhai, Ch. Gröschel, and D. Drummer, “Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures,” Polymer Testing, 54, 126-133 (2016).

    Article  CAS  Google Scholar 

  6. S. Feih, J. Wei, P. Kingshott, and B. F. Sorensen, “The influence of fiber sizing on the strength and fracture toughness of glass fiber composites,” Composites, Part A, 36, 245-255 (2005).

  7. D. Hristozov, L. Wroblewski, and P. Sadeghian, “Long-term tensile properties of natural fiber-reinforced polymer composites: Comparison of flax and glass fibers,” Composites, Part B, 95, 82-95 (2016).

  8. Z. Kołakowski, and A. Teter, “Load carrying capacity of functionally graded columns with open cross-sections under static compression,” Compos. Structures, 129, 1-7 (2015).

    Article  Google Scholar 

  9. T. Kubiak, Z. Kolakowski, J. Swiniarski, M. Urbaniak, and A. Gliszczynski, “Local buckling and post-buckling of composite channel-section beams - Numerical and experimental investigations,” Composites, Part B, 91, 176-88 (2016).

  10. H. Dębski and J. Jonak, “Failure analysis of thin-walled composite channel section columns,” Composite Structures, 132, 567-574 (2015).

    Article  Google Scholar 

  11. M. Urbaniak, A. Teter, and T. Kubiak, “Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression,” Composite Structures, 134, 199-208 (2015).

    Article  Google Scholar 

  12. F. Nunes, M. Correia, J. R. Correia, N. Silvestre, and A. Moreira, “Experimental and numerical study on the structural behaviour of eccentrically loaded GFRP columns,” Thin-Walled Structures, 72, 175-187 (2013).

    Article  Google Scholar 

  13. A. Teter, R.J. Mania, and Z. Kołakowski, “Non-linear multi-mode buckling of non-symmetric FML/FGM thin-walled columns with open cross-sections under compression,” Composite Structures, 167, 38-49 (2017).

    Article  Google Scholar 

  14. D. Banat and R. J. Mania, “Comparison of failure criteria application for FML column buckling strength analysis,” Composite Structures, 140, 806-815 (2016).

    Article  Google Scholar 

  15. P. M. H. Wong and Y. C. Wang, “An experimental study of pultruded glass-fiber-reinforced plastics channel columns at elevated temperatures,” Composite Structures, 81, 84-95 (2007).

    Article  Google Scholar 

  16. M. Schwab, M. Todt, M. Wolfahrt, and M. Pettermann, “Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements,” Composites Science and Technology, 128, 131-137 (2016).

    Article  CAS  Google Scholar 

  17. T. Kubiak and Ł. Kaczmarek, “Estimation of load-carrying capacity for thin-walled composite beams,” Composite Structures, 119, 749-756 (2015).

    Article  Google Scholar 

  18. H. Dębski, T. Kubiak, and A. Teter, “Experimental investigation of channel-section composite profiles behaviour with various sequences of plies subjected to static compression,” Thin-Walled Structures, 71, 147-154 (2013).

    Article  Google Scholar 

  19. D. S. Lobanov and S. V. Slovikov, “Mechanical behavior of a unidirectional basalt-fiber-reinforced plastic under thermomechanical loadings,” Mech. Compos. Mater., 54, No. 3, 351-358 (2018).

    Article  CAS  Google Scholar 

  20. S. Xiang, and G. W. Kang, “Meshless solution of the problem on the static behavior of thin and thick laminated composite beams,” Mech. Compos. Mater., 54, No. 1, 89-98 (2018).

    Article  Google Scholar 

  21. L. Czechowski, A. Gliszczyński, J. Bieniaś, P. Jakubczak, and K. Majerski, “Failure of GFRP channel section beams subjected to bending - Numerical and experimental investigations,” Composites, Part B, 111, 112-23 (2017).

  22. P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, 2248-2280 (1999).

    Article  Google Scholar 

  23. J. F. Chen, E. V. Morozov, and K. Shankar, “A combined elastoplastic damage model for progressive failure analysis of composite materials and structures,” Compos. Structures, 94, 3478-3489 (2012).

    Article  Google Scholar 

  24. D. Cárdenas, H. H. Elizalde, P. Marzocca, F. Abdi, L. Minnetyan, and L. Probst, “Progressive failure analysis of thin-walled composite structures,” Composite Structures, 95, 53-62 (2013).

    Article  Google Scholar 

  25. A. Gliszczyński and T. Kubiak, “Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression,” Composite Structures, 169, 52-61 (2017).

    Article  Google Scholar 

  26. A. Gliszczyński and L. Czechowski, “Collapse of channel section composite profile subjected to bending. Part I: Numerical investigations,” Composite Structures, 178, 383-394 (2017).

    Article  Google Scholar 

  27. I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites, Part A, 38, No. 11, 2333-2341 (2007).

  28. S. S. Seyedmohammad and F. El-Hajjar Rani, “Effects of scratch damage on progressive failure of laminated carbon fiber/epoxy composites,” International Journal of Mechanical Sciences, 67, 70-77 (2013).

    Article  Google Scholar 

  29. Y. Zhang, Y. Li, H. Ma, and T. Yu, “Tensile and interfacial properties of unidirectional flax/glass-fiber-reinforced hybrid composites,” Composites Science and Technology, 88, 172-177 (2013).

    Article  CAS  Google Scholar 

  30. A. Kent, K. A. Harries, Q. Guo, and D. Cardoso, “Creep and creep buckling of pultruded glass-reinforced polymer members,” Composite Structures, 181, 315-324 (2017).

    Article  Google Scholar 

  31. P. R. T. Santana, T. H. Panzera, R. T. S. Freire, and A. L. Christoforo, “Apparent shear strength of hybrid glass-fiber-reinforced composite joints,” Polymer Testing, 64, 307-312 (2017).

    Article  CAS  Google Scholar 

  32. P. Wolszczak, T. Sadowski, and S. Samborski, “On quantitative expression in fibrous composites based on an exemplary distribution of roving glass-fibers,” Composites, Part B, 129, 66-76 (2017).

  33. P. Slobodian, S. L. Pertegas, P. Riha, J. Matyas, R. Olejnik, R. Schledjewski, and M. Kovar, “Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection,” Composites Science and Technology, 156, 61-69 (2018).

    Article  CAS  Google Scholar 

  34. R. Barretta and R. Luciano, “Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates,” Composite Structures, 118, 448-454 (2014).

    Article  Google Scholar 

  35. A. Apuzzo, R. Barretta, and R. Luciano, “Some analytical solutions of functionally graded Kirchhoff plates,” Composites, Part B, 68, 266-269 (2015).

  36. R. Barretta and R. Luciano, “Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion,” Continuum Mechanics and Thermodynamics, 27, 499-505 (2015).

    Article  Google Scholar 

  37. R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra, and R. Penna, “Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation,” Composites, Part B, 100, 208-219 (2016).

  38. R. Barretta, L. Feo, R. Luciano, and F. Marotti de Sciarra, “Application of an enhanced version of the Eringen differentia model to nanotechnology,” Composites, Part B, 96, 274-280 (2016).

  39. R. Barretta, L. Feo, and R. Luciano, “An Eringen-like model for Timoshenko nanobeams,” Composite Structures, 139, 104-110 (2016).

    Article  Google Scholar 

  40. S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).

    Article  Google Scholar 

  41. Z. Hashin, “Failure criteria for unidirectional fiber composite,” J Applied Mechanics, 47, No. 2, 329-334 (1980).

  42. ANSYS 18.2 User’s Guide, Ansys Inc, Houston, USA.

  43. R. Hill, “Theoretical plasticity of textured aggregates,” Mathematical Proceedings Camb. Philosophical Society, 85, 179 (1979).

  44. R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proceedings of Royal Society of London, Series A, No. 193, 281 (1948).

  45. R. Hill, The Mathematical Theory of Plasticity, Oxford University (1950).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Czechowski.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 2, pp. 293-310, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czechowski, L., Gralewski, J. & Kubiak, T. Failure of Polymer Beams Reinforced with Glass Fibers. Mech Compos Mater 56, 195–206 (2020). https://doi.org/10.1007/s11029-020-09872-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09872-8

Keywords

Navigation