Skip to main content
Log in

Modern View of the Mechanism of Methanol Synthesis on Cu-Containing Catalysts

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Recent publications on the mechanism of methanol synthesis on Cu-containing catalysts were critically analyzed. The following mechanisms can be distinguished based on the key intermediates: formate, carbonate, carboxyl, and formyl. A stepwise mechanism of conversion of CO2 and CO into methanol was proposed taking into account the available experimental and calculated data. According to this mechanism, hydrogenation of CO2 starts with interaction of a CO2 molecule with dissociated hydrogen chemisorbed on the copper surface, forming monodentate formate, which easily transforms into bidentate formate. Subsequent hydrogenation of bidentate formate through a series of intermediates forms methanol. Another possible route of CO2 conversion in the presence of dissociated hydrogen is formation of carboxyl, which is converted into methanol via several intermediates, including formyl. If CO is present in syngas, its role is to remove the OH groups from the surface via the surface carboxyl (*COOH). Then carboxyl can undergo the following transformations: decomposition to СО2 and Н* and hydrogenation via formyl to methanol. The appearance of carbonate intermediates on the copper surface observed by IR spectroscopy at low pressures is not related to the mechanism of methanol synthesis. Some of the results of experiments obtained in the study of transition states require additional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Transformation and Utilization of Carbon Dioxide, Bhanage, B.M. and Arai, M., Berlin: Springer, 2014.

  2. Methanol Science and Engineering, Basile, A. and Dalena, F., Eds., Amsterdam: Elsevier, 2018, p. 686.

    Google Scholar 

  3. Busca, G., Heterogeneous Catalytic Materials. Solid State Chemistry, Surface Chemistry and Catalytic Behavior, Amsterdam: Elsevier, 2014, ch. 9.

    Google Scholar 

  4. Rozovskii, A.Ya. and Lin, G.I., Teoreticheskie osnovy protsessa sinteza metanola (Theoretical Foundations of Methanol Synthesis), Moscow: Khimiya, 1990.

  5. Rozovskii, A.Ya. and Lin, G.I., Top. Catal., 2003, vol. 22, p. 137.

    Article  CAS  Google Scholar 

  6. Waugh, K.C., Catal. Lett., 2012, vol. 142, p. 1153.

    Article  CAS  Google Scholar 

  7. Chinchen, G.C., Denny, P.J., Jennings, J.R., Spencer, M.S., and Waugh, K.C., Appl. Catal., 1988, vol. 36, p. 1.

    Article  CAS  Google Scholar 

  8. Kunkes, E. and Behrens, M., Chemical Energy Storage, Schlögl, R., Ed., De Gruyter Textbook, 2012, p. 413.

    Google Scholar 

  9. Ng, K.L., Chadwick, D., and Toseland, B.A., Chem. Eng. Sci., 1999, vol. 54, p. 3587.

    Article  CAS  Google Scholar 

  10. Sahibzada, M., Metcalfe, I. S., and Chadwick, D., J. Catal., 1998, vol. 174, p. 111.

    Article  CAS  Google Scholar 

  11. Dang, S., Yang, H., Gao, P., Wang, H., Li, X., Wei, W., and Sun, Y., Catal. Today, 2019, vol. 330, p. 61.

    Article  CAS  Google Scholar 

  12. Baltes, C., Vukojević, S., and Schüth, F., J. Catal., 2008, vol. 258, p. 334.

    Article  CAS  Google Scholar 

  13. Van de Water, L.G.A., Wilkinson, S.K., Smith, R.A.P., and Watson, M.J., J. Catal., 2018, vol. 364, p. 57.

    Article  CAS  Google Scholar 

  14. Behrens, M., Brennecke, D., Girgsdies, F., Kißner, S., Trunschke, A., Nasrudin, N., Zakaria, S., Idris, N.F., Hamid, S.B.A., Kniep, B., Fischer, R., Busser, W., Muhler, M., and Schlögl, R., Appl. Catal., A, 2011, vol. 392, p. 93.

  15. Khassin, A.A., Minyukova, T.P., and Yurieva, T.M., Mendeleev Commun., 2014, vol. 24, p. 67.

    Article  CAS  Google Scholar 

  16. Le Valant, A., Comminges, C., Tisseraud, C., Canaff, C., Pinard, L., and Pouilloux, Y., J. Catal., 2015, vol. 324, p. 41.

    Article  CAS  Google Scholar 

  17. Tisseraud, C., Comminges, C., Belin, T., Ahouari, H., Soualah, A., Pouilloux, Y., and Le Valant, A., J. Catal., 2015, vol. 330, p. 533.

    Article  CAS  Google Scholar 

  18. Kuld, S., Thorhauge, M., Falsig, H., Elkjær, C.F., Helveg, S., Chorkendorff, I., and Sehested, J., Science, 2016, vol. 352, p. 969.

    Article  CAS  PubMed  Google Scholar 

  19. Ovesen, C.V., Clausen, B.S., Schiøtz, J., Stoltze, P., Topsøe, H., and Nørskov, J.K., J. Catal., 1997, vol. 168, p. 133.

    Article  CAS  Google Scholar 

  20. Grunwaldt, J.-D., Molenbroek, A.M., Topsøe, N.-Y., Topsøe, H., and Clausen, B.S., J. Catal., 2000, vol. 194, p. 452.

    Article  CAS  Google Scholar 

  21. Wilmer, H. and Hinrichsen, O., Catal. Lett., 2002, vol. 82, p. 117.

    Article  CAS  Google Scholar 

  22. Grabow, L.C. and Mavrikakis, M., ACS Catal., 2011, vol. 1, p. 365.

    Article  CAS  Google Scholar 

  23. Yang, Y., Evans, J., Rodriguez, J.A., White, M.G., and Liu, P., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 9909.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, Y., Trung, T.S.B., Yang, S., Kim, S., and Lee, H., ACS Catal., 2016, vol. 6, p. 1037.

    Article  CAS  Google Scholar 

  25. Millar, G.J., Rochester, C.H., Howe, C., and Waugh, K.C., Mol. Phys., 1991, vol. 76, p. 833.

    Article  Google Scholar 

  26. Bowker, M. and Waugh, K.C., Surf. Sci., 2016, vol. 650, p. 93.

    Article  CAS  Google Scholar 

  27. Askgaard, T.S., Norskov, J.K., Ovesen, C.V., and Stolt, P., J. Catal., 1995, vol. 156, p. 229.

    Article  CAS  Google Scholar 

  28. Tang, Q.-L., Hong, Q.-J., and Liu, Z.-P., J. Catal., 2009, vol. 263, p. 114.

    Article  CAS  Google Scholar 

  29. Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C.V., Stoltze, P., Norskov, J.K., and Chorkendorff, I., Catal. Lett., 1994, vol. 26, p. 373.

    Article  CAS  Google Scholar 

  30. Kattel, S., Ramírez, P.J., Chen, J.G., Rodriguez, J.A., and Liu, P., Science, 2017, vol. 355, p. 1296.

    Article  CAS  PubMed  Google Scholar 

  31. Kunkes, E.L., Studt, F., Abild-Pedersen, F., Schlögl, R., and Behrens, M., J. Catal., 2015, vol. 328, p. 43.

    Article  CAS  Google Scholar 

  32. Graaf, G.H., Stamhuis, E.J., and Beenakers, A.A.C.M., Chem. Eng. Sci., 1988, vol. 43, p. 3185.

    Article  CAS  Google Scholar 

  33. Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G.K., and Olah, G.A., Chem. Soc. Rev., 2014, vol. 43, p. 7995.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, Y.-F., Yang, Y., Mims, C., Peden, C.H.F., Li, J., and Mei, D., J. Catal., 2011, vol. 281, p. 199.

    Article  CAS  Google Scholar 

  35. Yang, Y., Mims, C.A., Mei, D.H., Peden, C.H.F., and Campbell, C.T., J. Catal., 2013, vol. 298, p. 10.

    Article  CAS  Google Scholar 

  36. Yang, Y., Mims, C.A., Disselkamp, R.S., Kwak, J.H., Peden, C.H.F., and Campbell, C.T., J. Phys. Chem. C, 2010, vol. 114, p. 17 205.

    Article  CAS  Google Scholar 

  37. Yang, Y., Mei, D., Peden, C.H.F., Campbell, C.T., and Mims, C.A., ACS Catal., 2015, vol. 5, p. 7328.

    Article  CAS  Google Scholar 

  38. Bailey, S., Froment, G.F., Snoeck, J.W., and Waugh, K.C., Catal. Lett., 1995, vol. 30, p. 99.

    Article  Google Scholar 

  39. Clarke, D.B. and Bell, A.T., J. Catal., 1995, vol. 154, p. 314.

    Article  CAS  Google Scholar 

  40. Sakakini, B., Tabatabaei, J., Watson, M.J., Waugh, K.C., and Zemicael, F.W., Faraday Discuss., 1996, vol. 105, p. 369.

    Article  CAS  Google Scholar 

  41. Chinchen, G.C., Spencer, M.S., Waugh, K.C., and Whan, D.A., J. Chem. Soc., Faraday Trans. 1, 1987, vol. 83, p. 2193.

    Article  CAS  Google Scholar 

  42. Gokhale, A.A., Dumesic, J.A., and Mavrikakis, M., J. Am. Chem. Soc., 2008, vol. 130, p. 1402.

    Article  CAS  PubMed  Google Scholar 

  43. Madon, R.J., Braden, D., Kandoi, S., Nagel, P., Mavrikakis, M., and Dumesic, J.A., J. Catal., 2011, vol. 281, p. 1.

    Article  CAS  Google Scholar 

  44. Nakamura, J., Choi, Y., and Fujitani, T., Top. Catal., 2003, vol. 22, p. 277.

    Article  CAS  Google Scholar 

  45. Yurieva, T.M., Plyasova, L.M., Makarova, O.V., and Krieger, T.A., J. Mol. Catal. A: Chem., 1996, vol. 113, p. 455.

    Article  CAS  Google Scholar 

  46. Yurieva, T.M., Plyasova, L.M., Makarova, O.V., and Krieger, T.A., Stud. Surf. Sci. Catal., 1997. V. 107, p. 35.

    Article  CAS  Google Scholar 

  47. Hus, M., Kopač, D., and Likozar, B., ACS Catal., 2019, vol. 9, p. 105.

    Article  CAS  Google Scholar 

  48. Liu, Y-M., Liu, J.-T., Liu, S.-Z., Li, J., Gao, Z.-H., Zuo, Z.-J., and Huang, W., J. CO2 Util., 2017, vol. 20, p. 59.

  49. Bozzano, G. and Manenti, F., Prog. Energy Combust. Sci., 2016, vol. 56, p. 71.

    Article  Google Scholar 

  50. Bussche, K.M.V. and Froment, G.F., J. Catal., 1996, vol. 161, p. 1.

    Article  Google Scholar 

  51. Klier, K., Chatikavanij, V., Herman, R.G., and Simmons, G.W., J. Catal., 1982, vol. 74, p. 343.

    Article  CAS  Google Scholar 

  52. Wu, Z., Cole, J., Fang, H.L., Qin, M., and He, Z., J. Adv. Nanomater., 2017, vol. 2, p. 1.

    Google Scholar 

  53. Wilkinson, S.K., Van de Water, L.G.A., Miller, B., Simmons, M.J.H., Stitt, E.H., and Watson, M.J., J. Catal., 2016, vol. 337, p. 208.

    Article  CAS  Google Scholar 

  54. Peter, M., Fichtl, M.B., Ruland, H., Kaluza, S., Muhler, M., and Hinrichsen, O., Chem. Eng. J., 2012, vol. 203, p. 480.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kipnis.

Additional information

Dedicated to A.Ya. Rozovskii (1929–2008), who discovered the key role of СО2 in methanol synthesis

Translated by L. Smolina

Abbreviations: DFT, density functional theory; KMC, kinetic Monte Carlo method; IRRAS, infrared reflection absorption spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volnina, E.A., Kipnis, M.A. Modern View of the Mechanism of Methanol Synthesis on Cu-Containing Catalysts. Kinet Catal 61, 119–129 (2020). https://doi.org/10.1134/S0023158420010115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420010115

Keywords:

Navigation