Skip to main content
Log in

Metallothermic SHS in Conditions of Artificial Gravity: Mathematical Modeling

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract—

Metallothermic SHS in conditions of artificial gravity was numerically modelled for the 3NiO + 2Al → Al2O3 + 3Ni reaction taken as an example. The process was assumed to include (a) high-temperature combustion reaction yielding liquid products, (b) their gravity-assisted separation, and (c) cooling down. In our ‘throughout’ mathematical model, a three-component emulsion—gas, metal, and ceramics—with individual translational velocities and temperatures was considered. Our model may expectedly extend the range of control means for SHS reactions in extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Andreev, D.E., Sanin, V.N., Yukhvid, V.I., and Kovalev, D.Yu., Regular features of combustion of CaO2/Al/Ti/Cr/B hybrid mixtures, Combust. Explos. Shock Waves, 2011, vol. 47, no. 6, pp. 671–676. https://doi.org/10.1134/S0010508211060074

    Article  Google Scholar 

  2. Mukasyan, A., Lau, C., and Varma, A., Influence of gravity on combustion synthesis of advanced materials, AIAA J., 2005, vol. 43, no. 1, pp. 225–245. https://doi.org/10.2514/1.8972

    Article  CAS  Google Scholar 

  3. Odawara, O., Microgravitational combustion synthesis, Ceram. Int., 1997, vol. 23, no. 3, pp. 273–278. https://doi.org/10.1016/S0272-8842(96)00060-0

    Article  CAS  Google Scholar 

  4. Fredrick, M.D., Unuvar, C., Shaw, B.D., and Munir, Z.M., Electric field activated combustion synthesis in the Ti + Al system under terrestrial and reduced gravity conditions, Combust. Flame, 2013, vol. 160, no. 4, pp. 843–852. https://doi.org/10.1016/j.combustflame.2013.01.006

    Article  CAS  Google Scholar 

  5. Zhou, Z., Shoshin, Yu., Hernández-Pérez, F.E., van Oijen, J.A., and de Goey, L.P.H., Formation and stabilization of multiple ball-like flames at Earth gravity, Combust. Flame, 2018, vol. 192, pp. 35–43. https://doi.org/10.1016/j.combustflame.2018.01.034

    Article  CAS  Google Scholar 

  6. Fereres, S., Fernandez-Pello, C., Urban, D.L., and Ruff, G.A., Identifying the roles of reduced gravity and pressure on the piloted ignition of solid combustibles, Combust. Flame, 2015, vol. 162, no. 4, pp. 1136–1143. https://doi.org/10.1016/j.combustflame.2014.10.004

    Article  CAS  Google Scholar 

  7. Shkadinskii, K.G., Ozerkovskaya, N.I., and Krishenik, P.M., Quasi-hydrostatic model of the combustion of compositions forming molten reaction products in the presence of centrifugal forces, Russ. J. Phys. Chem. B, 2018, vol. 12, no. 2, pp. 219–224. https://doi.org/10.1134/S1990793118020112

    Article  CAS  Google Scholar 

  8. Ferguson R.E. and Shafirovich, E., Aluminum–nickel combustion for joining lunar regolith ceramic tiles, Combust. Flame, 2018, vol. 197, pp. 22–29. https://doi.org/10.1016/j.combustflame.2018.06.032

    Article  CAS  Google Scholar 

  9. Krishenik, P.M., Kostin, S.V., Ozerkovskaya, N.I., Shkadinskii, K.G., and Alymov, M.I., Propagation of cellular modes of combustion of porous media under nonadiabatic conditions, Dokl. Phys. Chem., 2018, vol. 480, no. 1, pp. 71–75. https://doi.org/10.1134/S0012501618050020

    Article  CAS  Google Scholar 

  10. Andreev, D.E., Yukhvid, V.I., Ikornikov, D.M., Sanin, V.N., and Ignat’eva, T.I., Gravity-assisted metallothermic SHS of titanium aluminide with Al–Ca mixture as a reducing agent, Int. J. Self-Propag. High-Temp.Synth., 2018, vol. 27, no. 2, pp. 89–91.https://doi.org/10.3103/S1061386218020048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E. Andreev, P. M. Krishenik or O. A. Golosova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.E., Shkadinsky, K.G., Ozerkovskaya, N.I. et al. Metallothermic SHS in Conditions of Artificial Gravity: Mathematical Modeling. Int. J Self-Propag. High-Temp. Synth. 28, 217–220 (2019). https://doi.org/10.3103/S1061386219040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219040022

Keywords:

Navigation