Skip to main content
Log in

Single-Step Solution-Combustion Synthesis of Magnetically Soft NiFe2O4 Nanopowders with Controllable Parameters

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

One-step solution-combustion synthesis with glycine as a fuel was used to obtain ferromagnetic nickel ferrite (NiFe2O4) spinel. According to EDX data, the elemental composition of all synthesized samples corresponded to NiFe2O4, while the XRD results showed the formation of phase-pure nickel ferrite spinel. NiFe2O4 nanopowders had a branched porous microstructure as established by SEM analysis. Variation in the Red/Ox ratio (glycine to nitrate ratio G/N = 0.4, 0.6, 0.8, 1.0, 1.2) was found to affect the average size of nickel ferrite crystallites (D) within the range 23–37 nm. The results of vibration magnetometry showed the ferromagnetic ordering in magnetic moments of NiFe2O4 nanopowders. The magnetic parameters of synthesized nickel ferrite—saturation magnetization Ms = 31–59 emu/g, remanent magnetization Mr = 3–13 emu/g, and coercive force Hc = 10–95 Oe—were found to depend on crystallite size D. The fact that the values of Ms, Mr, and Hc grow with increasing D opens up a way to synthesis of NiFe2O4 nanopowders with controllable magnetic parameters by simply varying the G/N ratio of starting solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Moradmard, H., Shayesteh, S.F., Tohidi, P., Abbas, Z., and Khaleghi, M., Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles, J. Alloys Comp., 2015, vol. 650, pp. 116–122. https://doi.org/10.1016/j.jallcom.2015.07.269

    Article  CAS  Google Scholar 

  2. Zhou, H., An, Z., Yuan, C., and Luo, X., Light-modulated ferromagnetism of strained NiFe2O4 nanocrystals, Ceram. Int., 2019, vol. 45, pp. 13319–13323. https://doi.org/10.1016/j.ceramint.2019.04.022

    Article  CAS  Google Scholar 

  3. Kumar, N.P., Chary, K.A., Sumana, B., Rao, K.S., Suresh, M.B., Raja, M.M., and Srinivas, A., Investigation of sintering methodologies and its influence on magnetic and electric properties of NiFe2O4: A comparative study, Mater. Res. Express, 2019, vol. 6, no. 8, 086112. https://doi.org/10.1088/2053-1591/ab249f

    Article  CAS  Google Scholar 

  4. Kharat, P.B., Shisode, M.V., Birajdar, S.D., Bhoyar, D.N., and Jadhav, K.M., Synthesis and characterization of water based NiFe2O4 ferrofluid, AIP Conf. Proc., 2017, vol. 1832, no. 1, 050122. https://doi.org/10.1063/1.4980355

    Article  CAS  Google Scholar 

  5. Deivakumaran, R., Sathya, G., Suresh Babu, S.K., and Berchmans, L.J., Structural, morphological, optical, and dielectric properties of Ni1–xZnxFe2O4 (x = 0–1) nanoparticles, J. Mater. Sci.: Mater. Electron., 2016, vol. 28, no. 2, pp. 1726–1739. https://doi.org/10.1007/s10854-016-5719-3

    Article  CAS  Google Scholar 

  6. Chauhan, L., Shukla, A.K., and Sreenivas, K., Dielectric and magnetic properties of nickel ferrite ceramics using crystalline powders derived from DL alanine fuel on sol–gel auto-combustion, Ceram. Int., 2015, vol. 41, no. 7, pp. 8341–8351. https://doi.org/10.1016/j.ceramint.2015.03.014

    Article  CAS  Google Scholar 

  7. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., and Kaviyarasu, K., Catalytic studies of NiFe2O4 nanoparticles prepared by conventional and microwave combustion method, Mater. Chem. Phys., 2018, vol. 221, pp. 11–28. https://doi.org/10.1016/j.matchemphys.2018.09.012

    Article  CAS  Google Scholar 

  8. Polaert, I., Bastin, S., Legras, B., Estel, L., and Braidy, N., Dielectric and magnetic properties of NiFe2O4 at 2.45 GHz and heating capacity for potential uses under microwaves, J. Magn. Magn. Mater., vol. 374, pp. 731–739. https://doi.org/10.1016/j.jmmm.2014.09.027

    Article  CAS  Google Scholar 

  9. Yattinahalli, S.S., Kapatkar, S.B., Ayachit, N.H., and Mathad, S.N., Synthesis and structural characterization of nanosized nickel ferrite, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 3, pp. 147–150. https://doi.org/10.3103/S1061386213030114

    Article  CAS  Google Scholar 

  10. Martinson, K.D., Kozyritskaya, S.S., Panteleev, I.B., and Popkov, V.I., Low coercivity microwave ceramics based on LiZnMn ferrite synthesized via glycine–nitrate combustion, Nanosyst.: Phys. Chem. Math., 2019, vol. 10, no. 3, pp. 313–317. https://doi.org/10.17586/2220-8054-2019-10-3-313-317

    Article  Google Scholar 

  11. Yang, L., Xie, Y., Zhao, H., Wu, X., and Wang, Y., Preparation and gas-sensing properties of NiFe2O4 semiconductor materials, Solid-State Electron., 2005, vol. 49, pp. 1029–1033. https://doi.org/10.1016/j.sse.2005.03.022

    Article  CAS  Google Scholar 

  12. Gadzhimagomedov, S.H., Alikhanov, N.M., Emirov, R.M., Palchaev, D.K., Murlieva, Z.K., Rabadanov, M.K., Sadykov, S.A., Khamidov, M.M., and Hash, A.D., Structure and properties of nanostructured YBa2Cu3O7–δ, BiFeO3 and Fe3O4, Semiconductors, 2017, vol. 51, no. 13, pp. 1686–1691. https://doi.org/10.1134/S1063782617130073

    Article  CAS  Google Scholar 

  13. Dyachenko, S.V., Martinson, K.D., Cherepkova, I.A., and Zhernovoi, I.A., Particle size, morphology and properties of transition metal ferrospinels of the MFe2O4 (M = Co, Ni, Zn) type produced by glycine–nitrate combustion, Russ. J. Appl. Chem., 2016, vol. 89, no. 4, pp. 535–539. https://doi.org/10.1134/S1070427216040029

    Article  CAS  Google Scholar 

  14. Senthilkumar, B., Selvan, R.K., and Vinothbabu, P., Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique, Mater. Chem. Phys., 2011, vol. 130, nos. 1–2, pp. 285–292. https://doi.org/10.1016/j.matchemphys.2011.06.043

    Article  CAS  Google Scholar 

  15. Karpova, S.S., Moshnikova, V.A., Maksimov, A.I., Mjakin, S.V., and Kazantseva, N.E., Study of the effect of the acid-base surface properties of ZnO, Fe2O4 and ZnFe2O4 oxides on their gas sensitivity to ethanol vapor, Semiconductors, 2013, vol. 47, no. 8, pp. 1026–1030.

    Article  CAS  Google Scholar 

  16. Ceylan, A., Ozcan, S., Ni, C., and Shah, S.I., Solid state reactions synthesis of NiFe2O4 nanoparticles, J. Magn. Magn. Mater., 2008, vol. 320, no. 6, pp. 857–863. https://doi.org/10.1016/j.jmmm.2007.09.003

    Article  CAS  Google Scholar 

  17. Huo, J. and Wei, M., Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method, Mater. Lett., 2009, vol. 63, nos. 13–14, pp. 1183–1184. https://doi.org/10.1016/j.matlet.2009.02.024

    Article  CAS  Google Scholar 

  18. Larumble, S., Perez-Landazabal, J.I., Pastor, J.M., and Gomez-Polo, C., Sol–gel NiFe2O4 nanoparticles: Effect of the silica coating, J. Appl. Phys., 2012, vol. 111, 103911. https://doi.org/10.1063/1.4720079

    Article  CAS  Google Scholar 

  19. Parthasarathi, B., Solution combustion synthesis as a novel route to preparation of catalysts, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 2, pp. 77–109. https://doi.org/10.3103/S106138621902002X

    Article  Google Scholar 

  20. Popkov, V.I., Almjasheva, O.V., Nevedomskiy, V.N., Sokolov, V.V. and Gusarov, V.V., Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion, Nanosystems: Phys. Chem.,Math., 2015, vol. 6, no. 6, pp. 866–874. https://doi.org/10.17586/2220-8054-2015-6-6-866-874

    Article  CAS  Google Scholar 

  21. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  Google Scholar 

  22. Martinson, K.D., Cherepkova, I.A., and Sokolov, V.V., Formation of cobalt ferrite nanoparticles during the burning of glycine–nitrate and their magnetic properties, Glass Phys. Chem., 2018, vol. 44, no. 1, pp. 21–25. https://doi.org/10.1134/S1087659618010091

    Article  CAS  Google Scholar 

  23. Mukasyan, A.S. and Rogachev, A.S., Combustion synthesis: Mechanically induced nanostructured materials, J. Mater. Sci., 2017, vol. 52, no. 20, pp. 11826–11833. https://doi.org/10.1007/s10853-017-1075-9

    Article  CAS  Google Scholar 

  24. Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., Izotova, S.G., and Gusarov, V.V., Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products, Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, pp. 1193–1198. https://doi.org/10.1134/S0036023615100162

    Article  CAS  Google Scholar 

  25. Martinson, K.D., Kondrashkova, I.S., and Popkov, V.I., Synthesis of EuFeO3 nanocrystals by glycine–nitrate combustion method, Russ. J. Appl. Chem., 2017, vol. 90, no. 8, pp. 1214–1218. https://doi.org/10.1134/S1070427217080031

    Article  CAS  Google Scholar 

  26. Kondrashkova, I.S., Martinson, K.D., Zakharova, N.V., and Popkov, V.I., Synthesis of HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion, Russ. J. Gen. Chem., 2018, vol. 88, no. 12, pp. 2465–2471. https://doi.org/10.1134/S1070363218120022

    Article  CAS  Google Scholar 

  27. Liu, J., Xiao, J., Zeng, X., Dong, P., Zhao, J., Zhang, Y., and Li, X., Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries, J. Alloys Comp., 2017, vol. 699, pp. 401–407. https://doi.org/10.1016/j.jallcom.2016.12.225

    Article  CAS  Google Scholar 

  28. Anupama, A.V., Kumar, R., Choudhary, H.K., and Sahoo, B., Synthesis of coral-shaped yttrium-aluminum-iron garnets by solution-combustion method, Ceram. Int., 2018, vol. 44, no. 3, pp. 3024–3031. https://doi.org/10.1016/j.ceramint.2017.11.059

    Article  CAS  Google Scholar 

  29. Zhuravlev, V.D., Bamburov, V.G, Beketov, A.R., Perelyaeva, L.A., Baklanova, I.V., Sivtsova, O.V., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., and Grigorov, I.G., Solution combustion synthesis of α-Al2O3 using urea, Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384. https://doi.org/10.1016/j.ceramint.2012.07.078

    Article  CAS  Google Scholar 

  30. Shelar, M.B., Puri, V.R., Yadav, S.N., Kurane, R.M., and Patange, S.M., Magnetoelectric composites yNi1–xCdxFe2O4 + (1 – y)Ba0.8Sr0.2ToO3 (x = 0.2, 0.4, 0.6; y = 0.15, 0.30, 0.45): Solution-combustion synthesis and microwave properties, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 3, pp. 167–173. https://doi.org/10.3103/S106138621803010X

    Article  CAS  Google Scholar 

  31. Parthasarathi, R., Berchmans, L.J., Pretha, R., Senguttuvan, G., and Umapathy, G., Combustion synthesis of nanocrystalline nickel ferrite using hexamine as a fuel, Int. J. Self-Propag. High-Temp. Synth., 2011, vol. 20, no. 4, pp. 236–240. https://doi.org/10.3103/S1061386211040108

    Article  CAS  Google Scholar 

  32. Jacob, J. and Khadar, A., Investigation of mixed spinel structure of nanostructured nickel ferrite, J. Appl. Phys., 2010, vol. 107, 113310. https://doi.org/10.1063/1.3429202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Martinson.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinson, K.D., Cherepkova, I.A., Panteleev, I.B. et al. Single-Step Solution-Combustion Synthesis of Magnetically Soft NiFe2O4 Nanopowders with Controllable Parameters. Int. J Self-Propag. High-Temp. Synth. 28, 266–270 (2019). https://doi.org/10.3103/S1061386219040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386219040101

Keywords:

Navigation