Skip to main content
Log in

Vibro-Acoustic Response in Vehicle Interior and Exterior Using Multibody Dynamic Systems Due to Cleat Impacts

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper presents the structural vibration and acoustic radiation of a multibody vehicle system in interior and exterior under cleat impact excitations. The entire structure model, which consists of a hyper-elastic tire, a 17-inch lightweight wheel, a rotatable hub, a high-strength knuckle, a control arm and a spring-damper suspension, is a quarter vehicle to simulate transient response when passing through a cleat. The normal acceleration of a vibrating structure surface is applied as an acoustic noise source. A structural-acoustic coupling is employed to consider the interactive effects of the coupled system. The influence of the structure-borne noise can be confirmed by the frequency-correlation analysis between vibration acceleration and acoustic pressure. A sound pressure level (SPL) for near-field radiation is calculated by the finite element method (FEM). In addition, acoustic characteristics such as sound intensity in the passenger cabin are calculated through the boundary element method (BEM). The cleat impact experiment in a hemi-anechoic chamber is presented and validated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armentani, E., Sepe, R., Parente, A. and Pirelli, M. (2017). Vibro-acoustic numerical analysis for the chain cover of a car engine. Applied Sciences7, 6, 610.

    Article  Google Scholar 

  • Benaziz, M., Nacivet, S. and Thouverez, F. (2015). A shock absorber model for structure-borne noise analyses. J. Sound and Vibration, 349, 177–194.

    Article  Google Scholar 

  • Bradley, G. L., Chang, P. C. and Mckenna, G. B. (2001). Rubber modeling using uniaxial test data. J. Applied Polymer Science81, 4, 837–848.

    Article  Google Scholar 

  • Cho, J. R., Kim, K. W., Jeon, J. H. and Woo, W. S. (2005). Transient dynamic response analysis of 3-D patterned tire rolling over cleat. European J. Mechanics — A/Solids24, 3, 519–531.

    Article  Google Scholar 

  • Citarella, R., Federico, L. and Cicatiello, A. (2007). Modal acoustic transfer vector approach in a FEM-BEM vibroacoustic analysis. Engineering Analysis with Boundary Elements31, 3, 248–258.

    Article  Google Scholar 

  • Craggs, A. (1973). An acoustic finite element approach for studying boundary flexibility and sound transmission between irregular enclosures. J. Sound and Vibration30, 3, 343–357.

    Article  MathSciNet  Google Scholar 

  • Diaz, C. G., Kindt, P., Middelberg, J., Vercammen, S., Thiry, C., Close, R. and Leyssens, J. (2016). Dynamic behavior of a rolling tyre: Experimental and numerical analyses. J. Sound and Vibration, 364, 147–164.

    Article  Google Scholar 

  • Djojodihardjo, H. (2015). Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation. Acta Astronautica, 108, 129–145.

    Article  Google Scholar 

  • de Oliveira, L. P. R., da Silva, M. M., Sas, P., Van Brussel, H. and Desmet, W. (2008). Concurrent mechatronic design approach for active control of cavity noise. J. Sound and Vibration314, 3–5, 507–525.

    Article  Google Scholar 

  • de Oliveira, L. P. R., da Silva, M. M., Mosquera Sánchez, J. A. and Gonçalves, L. A. M. (2012). Loudness scattering due to vibro-acoustic model variability. J. Brazilian Society of Mechanical Sciences and Engineering34, 2, 604–611.

    Google Scholar 

  • Everstine, G. C. (1981). A symmetric potential formulation for fluid-structure interaction. J. Sound and Vibration79, 1, 157–160.

    Article  Google Scholar 

  • Gérard, F., Tournour, M., Masri, N. E., Cremers, L., Felice, M. and Selmane, A. (2001). Numerical modeling of engine noise radiation through the use of acoustic transfer vectors — A case study. SAE Paper No. 2001-01-1514.

  • Hoever, C. and Kropp, W. (2015). The simulation of truck tire rolling noise. Proc. 44th Internoise Cong. & Exposition on Noise Control Engineering, San Francisco, USA.

  • Jung, S. P., Park, T. W. and Chung, W. S. (2011). Dynamic analysis of rubber-like material using absolute nodal coordinate formulation based on the non-linear constitutive law. Nonlinear Dynamics63, 1–2, 149–157.

    Article  Google Scholar 

  • Kido, I., Nakamura, A., Hayashi, T. and Asai, M. (1999). Suspension vibration analysis for road noise using finite element model. SAE Paper No. 1999-01-1788.

  • Kido, I. and Ueyama, S. (2005). Coupled vibration analysis of tire and wheel for road noise improvement. SAE Paper No. 2005-01-2525.

  • Kim, S. H., Lee, J. M. and Sung, M. H. (1999). Structural-acoustic modal coupling analysis and application to noise reduction in a vehicle passenger compartment. J. Sound and Vibration225, 5, 989–999.

    Article  Google Scholar 

  • Lee, H. W., Cho, J. R. and Jeong, W. B. (2017). Numerical method for simulating tire rolling noise by the concept of periodically exciting contact force. Int. J. Automotive Technology18, 5, 823–832.

    Article  Google Scholar 

  • Li, C., Wang, J., Qu, Y., Zhang, Z. and Hua, H. (2016). Numerical and experimental investigation on vibroacoustic response of a shaft-hull system. Engineering Analysis with Boundary Elements, 71, 129–139.

    Article  MathSciNet  Google Scholar 

  • Li, C., Liu, N., Su, J. and Hua, H. (2019). Vibro-acoustic responses of a coupled propeller-shaft-hull system due to propeller forces. Ocean Engineering, 173, 460–468.

    Article  Google Scholar 

  • Mohanty, A. R., St Pierre, B. D. and Suruli-Narayanasami, P. (2000). Structure-borne noise reduction in a truck cab interior using numerical techniques. Applied Acoustics59, 1, 1–17.

    Article  Google Scholar 

  • Nefske, D. J., Wolf Jr, J. A. and Howell, L. J. (1982). Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice. J. Sound and Vibration80, 2, 247–266.

    Article  Google Scholar 

  • Qu, Y., Hua, H. and Meng, G. (2015). Vibro-acoustic analysis of coupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements. J. Sound and Vibration, 355, 345–359.

    Article  Google Scholar 

  • Qu, Y., Su, J., Hua, H. and Meng, G. (2017). Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces. J. Sound and Vibration, 401, 76–93.

    Article  Google Scholar 

  • Rafie, M., Ghoreishy, M. H. R. and Naderi, G. (2018). Thermo-mechanical coupled finite element simulation of tire cornering characteristics-effect of complex material models and friction law. Mathematics and Computers in Simulation, 144, 35–51.

    Article  MathSciNet  Google Scholar 

  • Sommerfeld, A. (1949). Partial Differential Equations in Physics. Academic Press. New York, USA.

    MATH  Google Scholar 

  • Sung, S. H. and Nefske, D. J. (1984). A coupled structural-acoustic finite element model for vehicle interior noise analysis. J. Vibration, Acoustics, Stress, and Reliability in Design106, 2, 314–318.

    Article  Google Scholar 

  • Tatlow, J. and Ballatore, M. (2017). Road noise input identification for vehicle interior noise by multi-reference transfer path analysis. Procedia Engineering, 199, 3296–3301.

    Article  Google Scholar 

  • Unruh, J. F. (1980). Finite element subvolume technique for structural-borne interior noise prediction. J. Aircraft17, 6, 434–441.

    Article  Google Scholar 

  • van de Wall, A., Naets, F., Deckers, E. and Desmet, W. (2017). Stability-preserving model order reduction for time-domain simulation of vibro-acoustic FE models. Int. J. Numerical Methods in Engineering109, 6, 889–912.

    Article  MathSciNet  Google Scholar 

  • Wang, Y. L., Lu, C. H., Qin, X. P., Huang, S., Fu, G. and Ni, X. (2017). Analysis and control of structure-borne noise for a trimmed body by using panel acoustic participation method. Thin-Walled Structures, 119, 828–838.

    Article  Google Scholar 

  • Wei, C. and Olatunbosun, O. A. (2014). Transient dynamic behaviour of finite element tire traversing obstacles with different heights. J. Terramechanics, 56, 1–16.

    Article  Google Scholar 

  • Wolf Jr, J. A. (1977). Modal synthesis for combined structural-acoustic systems. American Institute of Aeronautics and Astronautics J.15, 5, 743–745.

    Article  Google Scholar 

  • Yeoh, O. H. (1990). Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chemistry and Technology63, 5, 792–805.

    Article  Google Scholar 

  • Zafeiropoulos, N. (2015). Active Noise Control in a Luxury Vehicle. Ph. D. Dissertation. University of Salford. Salford, UK.

    Google Scholar 

  • Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. (2005). The Finite Element Method: Its Basis and Fundamentals. Elsevier Science. Oxford, UK.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Won Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M.J., Lee, C.H. & Park, T.W. Vibro-Acoustic Response in Vehicle Interior and Exterior Using Multibody Dynamic Systems Due to Cleat Impacts. Int.J Automot. Technol. 21, 591–602 (2020). https://doi.org/10.1007/s12239-020-0056-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-020-0056-1

Key Words

Navigation