Skip to main content
Log in

Mössbauer Study of the Effect of Cation Substitutions on the Magnetic Phase Transitions in BiFe1 – xCrxO3 and (1 – x)BiFeO3xPbFe0.5Sb0.5O3 Solid Solutions

  • PROCEEDINGS OF THE XV INTERNATIONAL CONFERENCE “MÖSSBAUER SPECTROSCOPY AND ITS APPLICATIONS”
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract—

The concentration dependences of the magnetic phase transition temperature TN, determined based on the changes in Mössbauer spectra, were investigated for a BiFeO3 solid solution with ordered perovskite PbFe0.5Sb0.5O3 and for a disordered BiFe1 – xCrxO3 solid solution. It is established that the magnetic-order type in BiFe1 – xCrxO3 changes from antiferromagnetic to spin-glass at a higher degree of Fe-sublattice dilution in comparison with the PbFe0.5Nb0.5O3-based solid solutions presumably because of the smaller BiFeO3 lattice parameter. Due to the local ordering of Fe3+ and Sb5+ ions, the TN value decreases more rapidly (as compared to BiFe1 – xCrxO3) with a decrease in the Fe3+ content in the lattice of (1 – x)BiFeO3– xPbFe0.5Sb0.5O3 solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).

    Article  ADS  Google Scholar 

  2. V. V. Laguta, A. N. Morozovska, E. I. Eliseev, et al., J. Mater. Sci. 51, 5330 (2016).

    Article  ADS  Google Scholar 

  3. P. Baettig and N. A. Spaldin, Appl. Phys. Lett. 86, 012505 (2005).

    Article  ADS  Google Scholar 

  4. M. Goffinet, J. Iniguez, and P. Ghosez, Phys. Rev. B 86, 024415 (2012).

    Article  ADS  Google Scholar 

  5. I. P. Raevski, S. P. Kubrin, A. V. Pushkarev, et al., Ferroelectrics 525, 1 (2018).

    Article  Google Scholar 

  6. M. R. Suchomel, C. I. Thomas, M. Allix, et al., Appl. Phys. Lett. 90, 112909 (2007).

    Article  ADS  Google Scholar 

  7. M. A. Gilleo, J. Phys. Chem. Solids 13, 33 (1960).

    Article  ADS  Google Scholar 

  8. J. B. Goodenough, Magnetism and Chemical Bond (Interscience, New York, 1963).

    Google Scholar 

  9. I. P. Raevski, V. V. Titov, M. A. Malitskaya, et al., J. Mater. Sci. 49, 6459 (2014).

    Article  ADS  Google Scholar 

  10. D. D. Khalyavin, A. N. Salak, N. M. Olekhnovich, et al., Phys. Rev. B 89, 174414 (2014).

    Article  ADS  Google Scholar 

  11. I. P. Raevski, N. M. Olekhnovich, A. V. Pushkarev, et al., Ferroelectrics 444, 47 (2013).

    Article  Google Scholar 

  12. S. Nomura, H. Takabayashi, and T. Nakagawa, Jpn. J. Appl. Phys. 7, 600 (1968).

    Article  ADS  Google Scholar 

  13. V. V. Laguta, V. A. Stephanovich, M. Savinov, et al., New J. Phys. 16, 11304 (2014).

    Article  Google Scholar 

  14. A. A. Gusev, S. I. Raevskaya, V. V. Titov, et al., Ferroelectrics 496, 231 (2016).

    Article  Google Scholar 

  15. I. P. Raevski, S. P. Kubrin, S. I. Raevskaya, et al., Ferroelectrics 373, 121 (2008).

    Article  Google Scholar 

  16. L. I. Shvorneva, Yu. N. Venevtsev, et al., Sov. Phys. JETP 22, 722 (1965).

    ADS  Google Scholar 

  17. A. A. Gusev, S. I. Raevskaya, V. V. Titov, et al., Ferroelectrics 475, 41 (2015).

    Article  Google Scholar 

  18. I. P. Raevski, S. P. Kubrin, S. I. Raevskaya, et al., Ferroelectrics 398, 16 (2010).

    Article  Google Scholar 

  19. V. S. Pokatilov, V. V. Pokatilov, and A. S. Sigov, Phys. Solid State 51, 552 (2009).

    Article  ADS  Google Scholar 

  20. V. S. Rusakov, V. S. Pokatilov, A. S. Sigov, et al., JETP Lett. 100, 463 (2014).

    Article  ADS  Google Scholar 

  21. I. P. Raevski, S. P. Kubrin, V. V. Laguta, et al., Ferroelectrics 475, 20 (2015).

    Article  Google Scholar 

  22. A. T. Kozakov, A. G. Kochur, A. V. Nikolskii, et al., J. Mater. Sci. 52, 10140 (2017).

    Article  ADS  Google Scholar 

  23. E. I. Sitalo, I. P. Raevski, A. G. Lutokhin, et al., IEEE Trans. Ultrason. Ferroelect. Freq. Control 58, 914 (2011).

    Article  Google Scholar 

  24. Yu. O. Zagorodniy, R. O. Kuzian, I. V. Kondakova, et al., Phys. Rev. Mater. 2, 014401 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research (project no. 18-52-00029 Bel_a), Belarusian Republican Foundation for Basic Research (project no. T18R-048), Ministry of Science and Higher Education of the Russian Federation (project nos. 3.1649.2017/4.6 and 3.5346.2017/8.9), and a scholarship of the President of the Chinese Academy of Sciences (project no. 2018VEA0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Kubrin.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubrin, S.P., Raevski, I.P., Olekhnovich, N.M. et al. Mössbauer Study of the Effect of Cation Substitutions on the Magnetic Phase Transitions in BiFe1 – xCrxO3 and (1 – x)BiFeO3xPbFe0.5Sb0.5O3 Solid Solutions. Crystallogr. Rep. 65, 338–342 (2020). https://doi.org/10.1134/S1063774520030165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030165

Navigation