Skip to main content
Log in

Mössbauer Spectroscopy of Magnetic Nanoparticles: A Historical Perspective and State of the Art

  • PROCEEDINGS OF THE XV INTERNATIONAL CONFERENCE “MÖSSBAUER SPECTROSCOPY AND ITS APPLICATIONS”
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy is one of the main methods that are successfully applied to study the properties of magnetic nanoparticles (MNPs), because the small MNP size often of key importance for implementing various forms of absorption spectra of these materials. The results of experimental and theoretical Mössbauer spectroscopy studies of MNPs performed in the last 50 years are briefly discussed. The emphasis is on the mechanisms of formation of the magnetic hyperfine structure of spectra within the models of magnetic dynamics of nanoparticles of different magnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. A. Chuev and J. Hesse, Magnetic Properties of Solids, Ed. by K. B. Tamayo (Nova Science, New York, 2009), p. 1.

    Google Scholar 

  2. W. Kündig, H. Bömmel, G. Constabaris, and R. H. Lindquist, Phys. Rev. 142, 327 (1966).

    Article  ADS  Google Scholar 

  3. L. Néel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  4. H. H. Wickman, Mössbauer Effect Methodology, Ed. by I. J. Gruverman, Vol. 2 (Plenum Press, New York, 1966).

    Google Scholar 

  5. S. Mørup and H. Topsøe, Appl. Phys. 11, 63 (1976).

    Article  ADS  Google Scholar 

  6. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  7. D. H. Jones and K. K. P. Srivastava, Phys. Rev. B 34, 7542 (1986).

    Article  ADS  Google Scholar 

  8. J. van Lierop and D. H. Ryan, Phys. Rev. Lett. 85, 3021 (2000).

    Article  ADS  Google Scholar 

  9. M. A. Chuev, V. M. Cherepanov, and M. A. Polikarpov, JETP Lett. 92 (1), 21 (2010).

    Article  ADS  Google Scholar 

  10. M. A. Chuev, J. Phys.: Condens. Matter 23, 426003 (2011).

    ADS  Google Scholar 

  11. M. A. Chuev, V. M. Cherepanov, S. M. Deyev, et al., AIP Conf. Proc. 1311, 322 (2010).

    Article  ADS  Google Scholar 

  12. R. R. Gabbasov, D. M. Polikarpov, V. M. Cherepanov, et al., J. Magn. Magn. Mater. 427, 41 (2017).

    Article  ADS  Google Scholar 

  13. M. Eibschüts and S. Shtrikman, J. Appl. Phys. 39, 997 (1968).

    Article  ADS  Google Scholar 

  14. R. H. Lindquist, G. Constabaris, W. Kündig, and A. M. Portis, J. Appl. Phys. 39, 1001 (1968).

    Article  ADS  Google Scholar 

  15. L. Pfeiffer, J. Appl. Phys. 42, 1725 (1971).

    Article  ADS  Google Scholar 

  16. S. Mørup and E. Tronc, Phys. Rev. Lett. 72, 3278 (1994).

    Article  ADS  Google Scholar 

  17. S. Mørup, F. Bødker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B 52, 287 (1995).

    Article  ADS  Google Scholar 

  18. J. L. Dormann, F. D’Orazio, F. Lucari, et al., Phys. Rev. B 53, 14291 (1996).

    Article  ADS  Google Scholar 

  19. M. F. Hansen and S. Mørup, J. Magn. Magn. Mater. 184, 262 (1998).

    Article  ADS  Google Scholar 

  20. J. L. Dormann, D. Fiorani, and E. Tronc, J. Magn. Magn. Mater. 202, 251 (1999).

    Article  ADS  Google Scholar 

  21. J. Hesse, T. Graf, M. Kopcewicz, et al., Hyperfine Interact. 113, 499 (1998).

    Article  ADS  Google Scholar 

  22. A. M. Afanas’ev, M. A. Chuev, and Yu. Gesse, Zh. Eksp. Teor. Fiz. 116 (9), 1001 (1999).

    Google Scholar 

  23. M. A. Chuev, J. Phys.: Condens. Matter 23, 426003 (2011).

    ADS  Google Scholar 

  24. M. A. Chuev, JETP 114 (4), 609 (2012).

    Article  ADS  Google Scholar 

  25. M. A. Chuev, V. M. Cherepanov, M. P. Nikitin, and M. A. Polikarpov, Solid State Phenom. 190, 725 (2012).

    Article  Google Scholar 

  26. M. A. Chuev, JETP Lett. 95 (6), 295 (2012).

    Article  ADS  Google Scholar 

  27. M. A. Chuev, Dokl. Phys. 57 (11), 421 (2012).

    Article  ADS  Google Scholar 

  28. I. P. Suzdalev, V. K. Buravtsev, V. K. Imshennik, et al., Z. Phys. D 37, 55 (1996).

    Article  ADS  Google Scholar 

  29. F. Bødker, M. F. Hansen, S. B. Koch, et al., Phys. Rev. B 52, 6826 (2000).

    Article  ADS  Google Scholar 

  30. M. A. Chuev, Pis’ma JETP Lett. 103 (3), 175 (2016).

    Article  ADS  Google Scholar 

  31. M. A. Chuev, Adv. Condens. Matter Phys. 2017, 6209206 (2017).

    Article  Google Scholar 

  32. I. Mishchenko, M. Chuev, S. Kubrin, et al., J. Nanopart. Res. 20, 141 (2018).

    Article  ADS  Google Scholar 

  33. M. A. Chuev, V. M. Cherepanov, M. A. Polikarpov, et al., JETP Lett. 108 (1), 59 (2018).

    Article  ADS  Google Scholar 

  34. M. A. Chuev, JETP 108 (2), 249 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Valiev Institute of Physics and Technology of the Russian Academy of Sciences (subject no. 0066-2019-0004) and supported in part by the Russian Foundation for Basic Research, project no. 17-00-00443.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Chuev.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuev, M.A. Mössbauer Spectroscopy of Magnetic Nanoparticles: A Historical Perspective and State of the Art. Crystallogr. Rep. 65, 387–392 (2020). https://doi.org/10.1134/S1063774520030098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030098

Navigation