Skip to main content
Log in

Crystal Packing of Potentially Mesomorphic Azobenezene Derivatives R1–C6H4–N=N–C6H4R2 (R1, R2 = CH3COO, C2H5O; CH2=C(CH3)COO, C2H5; C6H13COO, C2H5O)

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structure and thermal properties of azobenzene derivatives R1–C6H4–N=N–C6H4R2, where R1/R2 = CH3COO/C2H5O (I), CH2=C(CH3)COO/C2H5 (II), or C6H13COO/C2H5O (III), were studied by differential scanning calorimetry and X-ray diffraction. Compounds I and III form a mesophase (nematic) upon melting, whereas compound II does not produce a mesophase. Compound III is characterized by two high-temperature crystal–crystal phase transitions IIIIIIIIIIIIIII. The low-temperature crystal modification, which is not a precursor of the mesophase, was structurally characterized. The crystal packing of I is stabilized by C−H···π interactions and consists of alternating loosely and closely packed regions. Weak directional interactions that connect the molecules into zigzag chains ensure the structuring of the mesophase of I. The possible structuring pattern of the mesophase of III is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. O. Lehman, Z. Phys. Chem. 4, 462 (1889).

    Google Scholar 

  2. W. Maier and A. Saupe, Z. Naturforsch. 15a, 287 (1960).

  3. R. L. Humphrie, P. G. Jame, and G. R. Luckhurs, J. Chem. Soc. Faraday Trans. II 68, 1031 (1972).

    Article  Google Scholar 

  4. P. G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973).

    Article  Google Scholar 

  5. W. L. Mc Millan, Phys. Rev. A 8, 1921 (1973).

    Article  ADS  Google Scholar 

  6. A. Wulf, Phys. Rev. A 11, 365 (1975).

    Article  ADS  Google Scholar 

  7. M. A. Cotter, Mol. Cryst. Liq. Cryst. 97, 29 (1983).

    Article  Google Scholar 

  8. M. A. Osipov, Molecular Theories of Liquid Crystals, Sect. 2, Ch. III, Vol. 1: Handbook of Liquid Crystals, Ed. by D. Demus et al. (Wiley–VCH, Weinheim, 1998), p. 40.

  9. G. Vertoge and W. H. Jeu, Thermotropic Liquid Crystals, Fundamentals (Springer, Berlin, 1988).

    Book  Google Scholar 

  10. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Univ. Press, New York, 1995).

    Book  Google Scholar 

  11. S. Singh, Phys. Rep. 324 (2–4), 107 (2000).

    Article  ADS  Google Scholar 

  12. L. G. Kuz’mina, I. I. Konstantinov, and S. I. Bezzubov, Khim. Vys. Energ. 50 (6), 478 (2016).

    Google Scholar 

  13. A. N. Kochetov, L. G. Kuz’mina, A. V. Churakov, et al., Crystallogr. Rep. 51 (1), 53 (2006).

    Article  ADS  Google Scholar 

  14. L. G. Kuz’mina, N. S. Kucherepa, S. M. Pestov, et al., Crystallogr. Rep. 54 (5), 862 (2009).

    Article  ADS  Google Scholar 

  15. L. G. Kuz’mina, S. M. Pestov, A. N. Kochetov, et al., Crystallogr. Rep. 55 (5), 786 (2010).

    Article  ADS  Google Scholar 

  16. L. G. Kuz’mina and N. S. Kucherepa, Crystallogr. Rep. 56 (2), 242 (2011).

    Article  ADS  Google Scholar 

  17. L. G. Kuz’mina, N. S. Kucherepa, and A. V. Churakov, Crystallogr. Rep. 56 (2), 213 (2012).

    Article  ADS  Google Scholar 

  18. L. G. Kuz’mina, M. A. Navasardyan, A. V. Churakov, and J. A. K. Howard, Mol. Cryst. Liq. Cryst. 638, 60 (2016).

    Article  Google Scholar 

  19. I. I. Konstantinov, A. V. Churakov, and L. G. Kuz’mina, Crystallogr. Rep. 58 (1), 81 (2013).

    Article  ADS  Google Scholar 

  20. L. G. Kuz’mina, I. I. Konstantinov, and E. Kh. Lermontova, Mol. Cryst. Liq. Cryst. 588, 1 (2014).

    Article  Google Scholar 

  21. L. G. Kuz’mina, I. I. Konstantinov, A. V. Churakov, and M. A. Navasardyan, Acta Crystallogr. E 73, 1052 (2017).

    Article  Google Scholar 

  22. A. I. Vogel, Practical Organic Chemistry, 3rd Ed. (Longman, London, 1966).

    Google Scholar 

  23. Bruker, APEX2, SADABS and SAINT (Bruker AXS Inc., Madison, Wisk, 2008).

  24. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, et al., J. Appl. Crystallogr. 42, 339 (2009).

    Article  Google Scholar 

  25. G. R. Desiraju and T. Syeiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  26. A. Nangia, Cryst. Eng. Commun. 4 (17), 93 (2002).

    Article  Google Scholar 

  27. K. Muller-Dethlefs and P. Hobza, Chem. Rev. 100, 143 (2000).

    Article  Google Scholar 

  28. Ch. Janiak, J. Chem. Soc. Dalton Trans., 3885 (2000).

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 16-13-10273). The samples were synthesized and characterized by I.I. Konstantinov within the framework of the state assignment of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. G. Kuz’mina or I. I. Konstantinov.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’mina, L.G., Konstantinov, I.I. & Navasardyan, M.A. Crystal Packing of Potentially Mesomorphic Azobenezene Derivatives R1–C6H4–N=N–C6H4R2 (R1, R2 = CH3COO, C2H5O; CH2=C(CH3)COO, C2H5; C6H13COO, C2H5O). Crystallogr. Rep. 65, 436–443 (2020). https://doi.org/10.1134/S1063774520030189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030189

Navigation