Skip to main content
Log in

Influence of Nucleation Conditions on the Structure of Zinc Oxide Films

  • SURFACE AND THIN FILMS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The temperature conditions of nucleation of ZnO films on surface-oxidized silicon substrates during magnetron sputtering of a cermet ZnO–Zn target in an Ar atmosphere and chemical vapor deposition in a hydrogen flow upon Zn and H2O vapor interaction have been investigated. It is shown that the rate of zinc desorption from a growing surface increases significantly and the film growth is suppressed at a substrate temperature above 450°C. It is revealed that two-step deposition with preliminary low-temperature sublayer formation is necessary for ZnO film formation at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. Voiculescu, F. Li, G. Kowach, et al., Micromachines 10 (10), 661 (2019). https://doi.org/10.3390/mi10100661

    Article  Google Scholar 

  2. M. Laurenti, M. Castellino, D. Perrone, et al., Sci. Rep. 7, 41957 (2017). https://doi.org/10.1038/srep41957

    Article  ADS  Google Scholar 

  3. M. Hu and F. L. Duan, Solid-State Electron. 150, 28 (2018). https://doi.org/10.1016/j.sse.2018.08.005

    Article  ADS  Google Scholar 

  4. F. Rahman, Opt. Eng. 58 (1), 010901 (2019). https://doi.org/10.1117/1.OE.58.1.010901

    Article  ADS  Google Scholar 

  5. Y. Adachi, N. Saito, I. Sakaguchi, and T. T. Suzuki, Thin Solid Films 685, 238 (2019). https://doi.org/10.1016/j.tsf.2019.06.023

    Article  ADS  Google Scholar 

  6. A. Sh. Asvarov, A. Kh. Abduev, A. K. Akhmedov, et al., Crystallogr. Rep. 63 (6), 994 (2018). https://doi.org/10.1134/s0023476118060036

    Article  ADS  Google Scholar 

  7. B. R. Lee, J. S. Goo, Y. W. Kim, et al., J. Power Sources 417, 61 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.015

    Article  ADS  Google Scholar 

  8. A. Abduev, A. Akmedov, A. Asvarov, and A. Chiolerio, Plasma Processes Polym. 12 (8), 725 (2015). https://doi.org/10.1002/ppap.201400230

    Article  Google Scholar 

  9. H. Liang, Solid State Phenom. 278, 48 (2018). https://doi.org/10.4028/www.scientific.net/SSP.278.48

    Article  Google Scholar 

  10. V. Sittinger, F. Ruske, W. Werner, et al., Thin Solid Films 496 (1), 16 (2006). https://doi.org/10.1016/j.tsf.2005.08.177

    Article  ADS  Google Scholar 

  11. F. U. Hamelmann, J. Phys.: Conf. Ser. 764, 012001 (2016). https://doi.org/10.1088/1742-6596/764/1/012001

    Article  Google Scholar 

  12. J. Pilz, A. Perrotta, P. Christian, et al., J. Vac. Sci. Technol. A 36 (1), 01A109 (2018). https://doi.org/10.1016/j.spmi.2014.03.030

    Article  ADS  Google Scholar 

  13. J. Zhang, X. Cui, Zh. Shi, et al., Superlattices Microstruct. 71, 23 (2014). https://doi.org/10.1016/j.spmi.2014.03.030

    Article  ADS  Google Scholar 

  14. K. Vijayalakshmi, K. Karthick, P. Dhivya, and M. Sridharan, Ceram. Int. 39, 5681 (2013). https://doi.org/10.1016/j.ceramint.2012.12.085

    Article  Google Scholar 

  15. K. Ellmer and T. Welzel, J. Mater. Res. 27 (5), 765 (2012). https://doi.org/10.1557/jmr.2011.428

    Article  ADS  Google Scholar 

  16. Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, et al., Appl. Phys. Lett. 83 (14), 2943 (2003). https://doi.org/10.1063/1.1615308

    Article  ADS  Google Scholar 

  17. V. Khranovskyy, R. Minikayev, S. Trushkin, et al., J. Cryst. Growth 308, 93 (2007). https://doi.org/10.1016/j.jcrysgro.2007.06.034

    Article  ADS  Google Scholar 

  18. A. I. Inamdar, S. H. Mujawar, S. B. Sadale, et al., Solids Energy Mater. Solids Cells 91 (10), 864 (2007). https://doi.org/10.1016/j.solmat.2007.01.018

    Article  Google Scholar 

  19. E. Vasco, C. Zaldo, and L. Vazquez, J. Phys.: Condens. Matter 13, L663 (2001). https://doi.org/10.1088/0953-8984/13/28/102

    Article  ADS  Google Scholar 

  20. Z. Baji, Z. Labadi, Z. E. Horvath, et al., Cryst. Growth Des. 12, 5615 (2012). https://doi.org/10.1021/cg301129v

    Article  Google Scholar 

  21. A. Abduev, A. Akhmedov, and A. Asvarov, J. Phys.: Conf. Ser. 291, 012039 (2011). https://doi.org/10.1088/1742-6596/291/1/012039

    Article  Google Scholar 

  22. G. Koblmueller, R. Averbeck, L. Geelhaar, et al., J. Appl. Phys. 93, 9591 (2003). https://doi.org/10.1063/1.1575929

    Article  ADS  Google Scholar 

  23. Sh. Tsumuki, T. Akiyama, A.-M. Pradipto, et al., Jpn. J. Appl. Phys. 58, SC1009 (2019). https://doi.org/10.7567/1347-4065/ab06b1

    Article  Google Scholar 

  24. B. P. Zhang, K. Wakatsuki, N. T. Binh, et al., Thin Solid Films 449, 12 (2004). https://doi.org/10.1016/S0040-6090(03)01466-4

    Article  ADS  Google Scholar 

  25. A. Kh. Abduev, B. M. Ataev, A. M. Bagomadova, and G. A. Krasulin, Izv. Akad. Nauk SSSR, Neorg. Mater., No. 11, 1928 (1987).

  26. S.-H. Jeong, I.-S. Kim, J.-K. Kim, and B.-T. Lee, J. Cryst. Growth 264, 327 (2004). https://doi.org/10.1016/j.jcrysgro.2004.01.006

    Article  ADS  Google Scholar 

  27. M. Shimizu, T. Shiosaki, and A. Kawabata, J. Cryst. Growth 57 (1), 94 (1982). https://doi.org/10.1016/0022-0248(82)90253-6

    Article  ADS  Google Scholar 

  28. A. Abduev, A. Akhmedov, A. Asvarov, and A. Omaev, J. Phys.: Conf. Ser. 345 (1), 012046 (2012). https://doi.org/10.1088/1742-6596/345/1/012046

    Article  Google Scholar 

  29. A. Kh. Abduev, A. K. Akhmedov, and A. Sh. Asvarov, Tech. Phys. Lett. 40 (7), 618 (2014).

    Article  ADS  Google Scholar 

  30. P. Ramanlal and L. M. Sander, Phys. Rev. Lett. 54 (6), 1828 (1985).

    Article  ADS  Google Scholar 

  31. L. N. Li, Y. Zhao, X. L. Chen, et al., Phys. Procedia 32, 687 (2012). https://doi.org/10.1016/j.phpro.2012.03.619

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed on equipment of the Analytical Shared Research Center of the Dagestan Research Center of the Russian Academy of Sciences and the Shared Equipment Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Funding

This study was performed within State assignments for the Amirkhanov Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences and the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences and supported in part by the Russian Foundation for Basic Research, project nos. 19-07-00537 and 20-02-00373, and the Ministry of Science and Higher Education of the Russian Federation, project no. RFMEFI62119X0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Asvarov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abduev, A.K., Akhmedov, A.K., Asvarov, A.S. et al. Influence of Nucleation Conditions on the Structure of Zinc Oxide Films. Crystallogr. Rep. 65, 491–495 (2020). https://doi.org/10.1134/S1063774520030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030025

Navigation