Skip to main content
Log in

Transformation of monoterpenes and monoterpenoids using gold-based heterogeneous catalysts

  • Review
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Gold is an attractive metal for using as catalyst because is very inert and resistant to air oxidation compared with other metals; furthermore, when gold is dispersed as nanoparticles onto a support it attains exceptional catalytic properties in organic reactions. Some heterogeneous gold catalysts have activity in the transformations of monoterpenes and monoterpenoids, natural organic compounds extracted from plants whose transformations produce substances with applications in fine chemicals, pharmaceuticals, cosmetics, agriculture, polymers and food industries. This review describes the achievements of some transformations of monoterpenes (α-pinene and limonene) and monoterpenoids (α-pinene epoxide, verbenol epoxide, myrtenol, nopol, perillyl alcohol, geraniol, nerol, carveol, citronellol, isoborneol, borneol, menthol, isopulegol, citronellal, carvone oxime and 2-adamantanol) reported from 2002 to 2018 through oxidation, hydrogenation, isomerization and amination over gold-based heterogeneous catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BET:

Brunauer–Emmett–Teller

C:

Activated carbon

cys:

Cysteine

DMCPHP:

(2R)-2-[(1R)-2,2-dimethylcyclopent-3-en-1-yl]-2-hydroxypropanal

DMMBHD:

(2R,3R)-6,6-dimethyl-4-methylidenebicyclo[3.1.1]heptane-2,3-diol

DP:

Deposition–precipitation method

Ex:

Exfoliated

GNP:

Gold nanoparticles

HT:

Hydrotalcite

HTMCPE:

2-Hydroxy-1-[(1S)-2,2,3-trimethylcyclopent-3-en-1-yl]ethanone

IM:

Impregnation method

M:

Metal

MCM:

Mobil composition of matter silica

met:

Methionine

MeCN:

Acetonitrile

MPCHD:

(1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol

MSU:

Michigan State University silica

n.r.:

Not reported

np:

Nanoparticles

P:

Post-synthesis method

P :

Pressure

PM:

Physical mixing

PVA:

Polyvinyl alcohol

rac:

Prepared with racemic amino acids ligands

SBA:

Santa Barbara amorphous silica

S products :

Products selectivity

T :

Temperature

t :

Time

TBHP:

Tert-butyl hydroperoxide

TEM:

Transmission electron microscopy

TOS:

Time-on-stream

UHP:

Urea hydrogen peroxide

WGSV:

Wet gas space velocity

X substrate :

Substrate conversion

References

  • Abad A, Almela C, Corma A, García H (2006) Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chem Commun 30:3178–3180

    Google Scholar 

  • Abad A, Corma A, García H (2007) Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure Appl Chem 79(11):1847

    CAS  Google Scholar 

  • Abad A, Corma A, García H (2008) Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chemistry (Eur J) 14(1):212–222

    CAS  Google Scholar 

  • Ajaikumar S, Ahlkvist J, Larsson W, Shchukarev A, Leino A-R, Kordas K et al (2011) Oxidation of α-pinene over gold containing bimetallic nanoparticles supported on reducible TiO2 by deposition-precipitation method. Appl Catal A 392(1–2):11–18

    CAS  Google Scholar 

  • Ajaikumar S, Golets M, Larsson W, Shchukarev A, Kordas K, Leino AR et al (2013) Effective dispersion of Au and Au–M (M = Co, Ni, Cu and Zn) bimetallic nanoparticles over TiO2 grafted SBA-15: their catalytic activity on dehydroisomerization of α-pinene. Microporous Mesoporous Mater 173:99–111  

    CAS  Google Scholar 

  • Akgül M, Özyağcı B, Karabakan A (2013) Evaluation of Fe- and Cr-containing clinoptilolite catalysts for the production of camphene from α-pinene. J Ind Eng Chem 19(1):240–249

    Google Scholar 

  • Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ et al (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    CAS  PubMed  Google Scholar 

  • Aprile C, Corma A, Domine ME, Garcia H, Mitchell C (2009) A cascade aerobic epoxidation of alkenes over Au/CeO and Ti-mesoporous material by “in situ” formed peroxides. J Catal 264(1):44–53

    CAS  Google Scholar 

  • Araujo IB, Souza CAM, De-Carvalho RR, Kuriyama SN, Rodrigues RP, Vollmer RS et al (1996) Study of the embryofoetotoxicity of α-terpinene in the rat. Food Chem Toxicol 34(5):477–482

    CAS  PubMed  Google Scholar 

  • Baddour FG, Snowden-Swan L, Super JD, Van Allsburg KM (2018) Estimating precommercial heterogeneous catalyst price: a simple step-based method. Org Process Res Dev 22(12):1599–1605

    CAS  Google Scholar 

  • Bailie JE, Abdullah HA, Anderson JA, Rochester CH, Richardson NV, Hodge N et al (2001) Hydrogenation of but-2-enal over supported Au/ZnO catalysts. Phys Chem Chem Phys 3(18):4113–4121

    CAS  Google Scholar 

  • Bastiani R, Zonno IV, Santos IAV, Henriques CA, Monteiro JLF (2004) Influence of thermal treatments on the basic and catalytic properties of Mg, Almixed oxides derived from hydrotalcites. Braz J Chem Eng 21:193–202

    CAS  Google Scholar 

  • Becerra J-A, Villa AL (2019) Chapter 1. Clean limonene transformations into added-value compounds of fine chemistry using heterogeneous catalysis. In: Taylor JC (ed) Advances in chemistry research, vol 47. Nova Science ublishers, Hauppauge, p 234

    Google Scholar 

  • Becerra J-A, González L-M, Villa A-L (2016) Kinetic study of α-pinene allylic oxidation over FePcCl16-NH2-SiO2 catalyst. J Mol Catal A 423:12–21

    CAS  Google Scholar 

  • Bejeshk MA, Samareh Fekri M, Najafipour H, Rostamzadeh F, Jafari E, Rajizadeh MA et al (2019) Anti-inflammatory and anti-remodeling effects of myrtenol in the lungs of asthmatic rats: histopathological and biochemical findings. Allergol Immunopathol 47(2):185–193

    CAS  Google Scholar 

  • Bhatia SP, Letizia CS, Api AM (2008a) Fragrance material review on borneol. Food Chem Toxicol 46(11 Suppl):S77–S80

    CAS  PubMed  Google Scholar 

  • Bhatia SP, McGinty D, Letizia CS, Api AM (2008b) Fragrance material review on isoborneol. Food Chem Toxicol 46(11 Suppl):S182–S184

    CAS  PubMed  Google Scholar 

  • Bhatia SP, McGinty D, Letizia CS, Api AM (2008c) Fragrance material review on laevo-carveol. Food Chem Toxicol 46(11 Suppl):S88–S90

    CAS  PubMed  Google Scholar 

  • Bhatia SP, McGinty D, Letizia CS, Api AM (2008d) Fragrance material review on myrtenol. Food Chem Toxicol 46(11 suppl):S237–S240

    CAS  PubMed  Google Scholar 

  • Bogel-Łukasik E, Bogel-Łukasik R, da Ponte MN (2009) Pt- and Pd-catalysed limonene hydrogenation in high-density carbon dioxide. Monatsh Chem Chem Mon 140(11):1361

    Google Scholar 

  • Bond G, Sermon A (1973) Gold catalysts for olefin hydrogenation. Transmutation of catalytic properties. Gold Bull 6(4):102–105

    CAS  Google Scholar 

  • Bond GC, Sermon PA, Webb G, Buchanan DA, Wells PB (1973) Hydrogenation over supported gold catalysts. J Chem Soc Chem Commun 13:444b–445

    Google Scholar 

  • Bone WA, Wheeler RV (1906) The combination of hydrogen and oxygen in contact with hot surfaces. Proc R Soc A Math Phys Eng Sci 77(515):146–147

    Google Scholar 

  • Boronat M, Concepción P, Corma A, González S, Illas F, Serna P (2007) A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J Am Chem Soc 129(51):16230–16237

    CAS  PubMed  Google Scholar 

  • Boronat M, Illas F, Corma A (2009) Active sites for H2 adsorption and activation in Au/TiO2 and the role of the support. J Phys Chem A 113(16):3750–3757

    CAS  PubMed  Google Scholar 

  • Burgueño-Tapia E, Zepeda LG, Joseph-Nathan P (2010) Absolute configuration of (−)-myrtenal by vibrational circular dichroism. Phytochemistry 71(10):1158–1161

    PubMed  Google Scholar 

  • Bus E, Miller JT, van Bokhoven JA (2005) Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109(30):14581–14587

    CAS  PubMed  Google Scholar 

  • Caballero C, Valencia J, Barrera M, Gil A (2010) Selective hydrogenation of citral over gold nanoparticles on alumina. Powder Technol 203(2):412–414

    CAS  Google Scholar 

  • Cárdenas-Lizana F, Keane MA (2013) The development of gold catalysts for use in hydrogenation reactions. J Mater Sci 48(2):543–564

    Google Scholar 

  • Casas-Orozco D, Alarcón E, Villa AL (2015) Kinetic study of the nopol synthesis by the Prins reaction over tin impregnated MCM-41 catalyst with ethyl acetate as solvent. Fuel 149:130–137

    CAS  Google Scholar 

  • Castillejos E, Gallegos-Suarez E, Bachiller-Baeza B, Bacsa R, Serp P, Guerrero-Ruiz A et al (2012) Deposition of gold nanoparticles on ZnO and their catalytic activity for hydrogenation applications. Catal Commun 22:79–82

    CAS  Google Scholar 

  • Charbonneau L, Foster X, Zhao D, Kaliaguine S (2018) Catalyst-free epoxidation of limonene to limonene dioxide. ACS Sustain Chem Eng 6(4):5115–5121

    CAS  Google Scholar 

  • Che M, Bennett O (1989) The influence of particle size on the catalytic properties of supported metals. Adv Catal 36:55–172

    CAS  Google Scholar 

  • Ciriminna R, Lomeli-Rodriguez M, Demma Cara P, Lopez-Sanchez JA, Pagliaro M (2014) Limonene: a versatile chemical of the bioeconomy. Chem Commun 50(97):15288–15296

    CAS  Google Scholar 

  • Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291(1):222–229

    CAS  Google Scholar 

  • Claus P, Hofmeister H, Mohr C (2004) Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol. Gold Bull 37(3):181–186

    CAS  Google Scholar 

  • Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37(9):2096–2126

    CAS  PubMed  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    CAS  PubMed  Google Scholar 

  • Costa VV, Estrada M, Demidova Y, Prosvirin I, Kriventsov V, Cotta RF et al (2012) Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. J Catal 292:148–156

    CAS  Google Scholar 

  • de Almeida AAC, Costa JP, de Carvalho RBF, de Sousa DP, de Freitas RM (2012) Evaluation of acute toxicity of a natural compound (+)-limonene epoxide and its anxiolytic-like action. Brain Res 1448:56–62

    PubMed  Google Scholar 

  • de Carvalho CCCR, da Fonseca MMR (2006) Carvone: why and how should one bother to produce this terpene. Food Chem 95(3):413–422

    Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15):1621–1637

    CAS  PubMed  Google Scholar 

  • Delolo FG, Oliveira KCB, dos Santos EN, Gusevskaya EV (2019) Hydroformylation of biomass-based hydroxyolefins in eco-friendly solvents: new fragrances from myrtenol and nopol. Mol Catal 462:1–9

    CAS  Google Scholar 

  • Demarne FE, Van der Walt JJA (1992) Composition of the essential oil of Pelargonium vitifolium (L.) L’Hérit. (Geraniaceae). J Essent Oil Res 4(4):345–348  

    CAS  Google Scholar 

  • Demidova YS (2014) Terpenoid transformations over gold catalysts. PhD thesis, Åbo Akademi University

  • Demidova YS, Simakova IL, Estrada M, Beloshapkin S, Suslov EV, Korchagina DV et al (2013) One-pot myrtenol amination over Au nanoparticles supported on different metal oxides. Appl Catal A 464–465:348–356

    Google Scholar 

  • Demidova YS, Ardashov OV, Simakova OA, Simakova IL, Volcho KP, Salakhutdinov NF et al (2014) Isomerization of bicyclic terpene epoxides into allylic alcohols without changing of the initial structure. J Mol Catal A Chem 388–389:162–166

    Google Scholar 

  • Demidova YS, Suslov EV, Simakova OA, Simakova IL, Volcho KP, Salakhutdinov NF et al (2015) Selective carvone hydrogenation to dihydrocarvone over titania supported gold catalyst. Catal Today 241:189–194

    CAS  Google Scholar 

  • Demidova YS, Suslov EV, Simakova OA, Volcho KP, Salakhutdinov NF, Simakova IL et al (2016) Selective one-pot carvone oxime hydrogenation over titania supported gold catalyst as a novel approach for dihydrocarvone synthesis. J Mol Catal A Chem 420:142–148

    CAS  Google Scholar 

  • Demidova YS, Suslov EV, Simakova IL, Mozhajcev ES, Korchagina DV, Volcho KP et al (2018) One-pot monoterpene alcohol amination over Au/ZrO2 catalyst: effect of the substrate structure. J Catal 360:127–134

    CAS  Google Scholar 

  • Echavarren AM, Hashmi ASK, Toste FD (2016) Gold catalysis-steadily increasing in importance. Adv Synth Catal 358(9):1347–1347

    CAS  Google Scholar 

  • Elangovan SP, Inoue K, Yokoi T, Okubo T, Kojima A, Ogura M (2008) Solid acid porous materials for the catalytic transformation of 1-adamantanol. Catal Today 131(1):367–371

    CAS  Google Scholar 

  • Enache DI, Knight DW, Hutchings GJ (2005) Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts. Catal Lett 103(1):43–52

    CAS  Google Scholar 

  • Fahlbusch KG, Hammerschmidt FJ, Panten J, Pickenhagen W, Schatkowski D, Bauer K et al (2003) Flavors and fragrances. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 73–198

    Google Scholar 

  • Fu J, Lu X, Savage PE (2011) Hydrothermal decarboxylation and hydrogenation of fatty acids over Pt/C. Chemsuschem 4(4):481–486

    CAS  PubMed  Google Scholar 

  • Gaich T, Mulzer J (2012) 2.7 chiral pool synthesis: starting from terpenes. In: Carreira EM, Yamamoto H (eds) Comprehensive chirality. Elsevier, Amsterdam, pp 163–206

    Google Scholar 

  • Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Catal Rev 40(1–2):81–126

    CAS  Google Scholar 

  • Glaspell G, Hassan HMA, Elzatahry A, Abdalsayed V, El-Shall MS (2008) Nanocatalysis on supported oxides for CO oxidation. Top Catal 47(1):22–31

    CAS  Google Scholar 

  • Gluhoi AC, Bakker JW, Nieuwenhuys BE (2010) Gold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticles. Catal Today 154(1):13–20

    CAS  Google Scholar 

  • Haider P, Baiker A (2007) Gold supported on Cu–Mg–Al-mixed oxides: strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J Catal 248(2):175–187

    CAS  Google Scholar 

  • Hari TK, Yaakob Z (2015) Recent development of supported monometallic gold as heterogeneous catalyst for selective liquid phase hydrogenation reactions. Chin J Chem Eng 23(2):327–336

    CAS  Google Scholar 

  • Haruta M (2003) When gold is not noble: catalysis by nanoparticles. Chem Rec 3(2):75–87

    CAS  PubMed  Google Scholar 

  • Hashmi ASK (2007) Gold-catalyzed organic reactions. Chem Rev 107(7):3180–3211

    CAS  PubMed  Google Scholar 

  • Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45(47):7896–7936  

    Google Scholar 

  • Hutchings GJ (2005) Catalysis by gold. Catal Today 100(1):55–61

    CAS  Google Scholar 

  • Hutchings GJ (2008) Supported gold and gold palladium catalysts for selective chemical synthesis. Catal Today 138(1):9–14

    CAS  Google Scholar 

  • Ishmuratov GY, Yakovleva MP, Valeeva EF, Vydrina VA, Tolstikov GA (2012) Monoterpene ketones in the synthesis of optically active insect pheromones. Russ J Bioorg Chem 38(7):667–688

    CAS  Google Scholar 

  • Kartusch C, van Bokhoven JA (2009) Hydrogenation over gold catalysts: the interaction of gold with hydrogen. Gold Bulletin 42(4):343–348

    CAS  Google Scholar 

  • Khanderi J, Hoffmann RC, Engstler J, Schneider JJ, Arras J, Claus P et al (2010) Binary Au/MWCNT and ternary Au/ZnO/MWCNT nanocomposites: synthesis, characterisation and catalytic performance. Chemistry (Eur J) 16(7):2300–2308

    CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    CAS  Google Scholar 

  • Krishna KS, Vivekanandan G, Ravinder D, Eswaramoorthy M (2010) ZnO: a versatile template to obtain unusual morphologies of silica, gold and carbon nanostructures. Chem Commun 46(17):2989–2991

    CAS  Google Scholar 

  • Lapczynski A, Bhatia SP, Letizia CS, Api AM (2008a) Fragrance material review on dl-citronellol. Food Chem Toxicol 46(11 supplement):S103–S109

    CAS  PubMed  Google Scholar 

  • Lapczynski A, Foxenberg RJ, Bhatia SP, Letizia CS, Api AM (2008b) Fragrance material review on nerol. Food Chem Toxicol 46(11 Suppl):S241–S244

    CAS  PubMed  Google Scholar 

  • Leandro SR, Mourato AC, Łapińska U, Monteiro OC, Fernandes CI, Vaz PD et al (2018) Exploring bulk and colloidal Mg/Al hydrotalcite–Au nanoparticles hybrid materials in aerobic olefin epoxidation. J Catal 358:187–198

    CAS  Google Scholar 

  • Leiva de Faria M, de Magalhães RA, Silva FC, de Matias LGO, Ceschi MA, Brocksom U et al (2000) Enantiodivergent syntheses of cycloheptenone intermediates for guaiane sesquiterpenes. Tetrahedron Asymmetry 11(20):4093-4103

    CAS  Google Scholar 

  • Leonard J, Blacker AJ, Marsden SP, Jones MF, Mulholland KR, Newton R (2015) A survey of the borrowing hydrogen approach to the synthesis of some pharmaceutically relevant intermediates. Org Process Res Dev 19(10):1400–1410

    CAS  Google Scholar 

  • Li Z, Brouwer C, He C (2008) Gold-catalyzed organic transformations. Chem Rev 108(8):3239–3265

    CAS  PubMed  Google Scholar 

  • Liao P-C, Yang T-S, Chou J-C, Chen J, Lee S-C, Kuo Y-H et al (2015) Antiinflammatory activity of neral and geranial isolated from fruits of Litsea cubeba Lour. J Funct Foods 19:248–258

    CAS  Google Scholar 

  • Lima LF, Corraza ML, Cardozo-Filho L, Márquez-Alvarez H, Antunes OAC (2006) Oxidation of limonene catalyzed by metal(salen) complexes. Braz J Chem Eng 23:83–92

    CAS  Google Scholar 

  • Lin S, Vannice MA (1991) Gold dispersed on TiO2 and SiO2: adsorption properties and catalytic behavior in hydrogenation reactions. Catal Lett 10(1):47–61

    CAS  Google Scholar 

  • Lis-Balchin M, Roth G (1999) Citronellic acid: a major component in two Pelargonium species (Geraniaceae). J Essent Oil Res 11(1):83–85

    CAS  Google Scholar 

  • Liston BW, Nines R, Carlton PS, Gupta A, Aziz R, Frankel W et al (2003) Perillyl alcohol as a chemopreventive agent in N-nitrosomethylbenzylamineinduced rat esophageal tumorigenesis. Cancer Res 63(10):2399–2403

    CAS  PubMed  Google Scholar 

  • Liu R, Yu Y, Yoshida K, Li G, Jiang H, Zhang M et al (2010) Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2. J Catal 269(1):191–200

    CAS  Google Scholar 

  • Lu XH, Lei J, Wei XL, Ma XT, Zhang TJ, Hu W et al (2015) Selectively catalytic epoxidation of α-pinene with dry air over the composite catalysts of Co-MOR(L) with Schiff-base ligands. J Mol Catal A 400:71–80

    CAS  Google Scholar 

  • Macaev FZ (2013) Chapter 7-Bioactive natural products from enantiomeric carvones. In: Attaur R (ed) Studies in natural products chemistry. Elsevier, London, pp 233–267

    Google Scholar 

  • Marmulla R, Harder J (2014) Microbial monoterpene transformations-a review. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00346

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin A, Armbruster U, Decker D, Gedig T, Köckritz A (2008) Oxidation of citronellal to citronellic acid by molecular oxygen using supported gold catalysts. Chemsuschem 1(3):242–248

    CAS  PubMed  Google Scholar 

  • McEwan L, Julius M, Roberts S, Fletcher J (2010) A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bull 43(4):298–306

    CAS  Google Scholar 

  • Meylemans HA, Quintana RL, Harvey BG (2012) Efficient conversion of pure and mixed terpene feedstocks to high density fuels. Fuel 97:560–568

    CAS  Google Scholar 

  • Milone C, Tropeano ML, Gulino G, Neri G, Ingoglia R, Galvagno S (2002) Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts. Chem Commun 8:868–869

    Google Scholar 

  • Milone C, Crisafulli C, Ingoglia R, Schipilliti L, Galvagno S (2007) A comparative study on the selective hydrogenation of α, β unsaturated aldehyde and ketone to unsaturated alcohols on Au supported catalysts. Catal Today 122(3):341–351

    CAS  Google Scholar 

  • Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K (2009) Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst. Adv Synth Catal 351(11–12):1890–1896

    CAS  Google Scholar 

  • Mohr C, Claus P (2001) Hydrogenation properties of supported nanosized gold particles. Sci Prog 84(4):311–334

    CAS  PubMed  Google Scholar 

  • Mohr C, Hofmeister H, Claus P (2003a) The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J Catal 213(1):86–94

    CAS  Google Scholar 

  • Mohr C, Hofmeister H, Radnik J, Claus P (2003b) Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc 125(7):1905–1911

    CAS  PubMed  Google Scholar 

  • Monteiro JLF, Veloso CO (2004) Catalytic conversion of terpenes into fine chemicals. Top Catal 27(1):169–180

    CAS  Google Scholar 

  • Nikolaev SA, Zanaveskin LN, Smirnov VV, Averyanov VA, Zanaveskin KL (2009) Catalytic hydrogenation of alkyne and alkadiene impurities in alkenes: Practical and theoretical aspects. Russ Chem Rev 78(3):231–247

    CAS  Google Scholar 

  • Pan M, Brush AJ, Pozun ZD, Ham HC, Yu W-Y, Henkelman G et al (2013) Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chem Soc Rev 42(12):5002–5013

    CAS  PubMed  Google Scholar 

  • Pašek J, Kondelik P, Richter P (1972) Equilibrium conditions for amination of alcohols and carbonyl compounds. Product R&D 11(3):333–337

    Google Scholar 

  • Pattamakomsan K, Ehret E, Morfin F, Gélin P, Jugnet Y, Prakash S et al (2011) Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catal Today 164(1):28–33

    CAS  Google Scholar 

  • Ponec V (1997) On the role of promoters in hydrogenations on metals; α, β-unsaturated aldehydes and ketones. Appl Catal A 149(1):27–48

    CAS  Google Scholar 

  • Prati L, Martra G (1999) New gold catalysts for liquid phase oxidation. Gold Bull 32(3):96–101

    CAS  Google Scholar 

  • Primo A, Concepción P, Corma A (2011) Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chem Commun 47(12):3613–3615

    CAS  Google Scholar 

  • Qi S, Cheney BA, Zheng R, Lonergan WW, Yu W, Chen JG (2011) The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2. Appl Catal A 393(1):44–49

    CAS  Google Scholar 

  • Ramirez Reina T, Ivanova S, Centeno MA, Odriozola JA (2013) Low temperatura CO oxidation on multicomponent gold based catalysts. Front Chem. https://doi.org/10.3389/fchem.2013.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Retajczyk M, Wróblewska A (2017) The isomerization of limonene over the Ti-SBA-15 catalyst-the influence of reaction time, temperature, and catalyst content. Catalysts 7(9):273

    Google Scholar 

  • Rozenbaum HF, Patitucci ML, Antunes OAC, Pereira N Jr (2006) Production of aromas and fragrances through microbial oxidation of monoterpenes. Braz J Chem Eng 23:273–279

    CAS  Google Scholar 

  • Ruiz D, Aho A, Saloranta T, Eränen K, Wärnå J, Leino R et al (2017) Direct amination of dodecanol with NH3 over heterogeneous catalysts. Catalyst screening and kinetic modelling. Chem Eng J 307:739–749

    CAS  Google Scholar 

  • Schimpf S, Lucas M, Mohr C, Rodemerck U, Brückner A, Radnik J et al (2002) Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions. Catal Today 72(1):63–78

    CAS  Google Scholar 

  • Sell CS (2003) A fragrant introduction to terpenoid chemistry. R Soc Chem, p 426

  • Shahzad SA, Sajid MA, Khan ZA, Canseco-Gonzalez D (2017) Gold catalysis in organic transformations: a review. Synth Commun 47(8):735–755

    CAS  Google Scholar 

  • Silva OA, de Oliveira FRdAM, Lima TC, de Sousa DP, de Souza AA, de Freitas RM (2012) Evaluation of the antioxidant effects in vitro of the isopulegone. Free Radic Antioxid 2(4):50–55

    CAS  Google Scholar 

  • Simakova IL, Solkina YS, Moroz BL, Simakova OA, Reshetnikov SI, Prosvirin IP et al (2010) Selective vapour-phase α-pinene isomerization to camphene over gold-on-alumina catalyst. Appl Catal A 385(1):136–143

    CAS  Google Scholar 

  • Simakova OA, Davis RJ, Murzin D (2013) Biomass processing over gold Catalysts. Springer, p 64

  • Solkina YS, Reshetnikov SI, Estrada M, Simakov A, Murzin DY, Simakova IL (2011) Evaluation of gold on alumina catalyst deactivation dynamics during α-pinene isomerization. Chem Eng J 176–177:42–48  

    Google Scholar 

  • Steeghs MML, Crespo E, Harren FJM (2007) Collision induced dissociation study of 10 monoterpenes for identification in trace gas measurements using the newly developed proton-transfer reaction ion trap mass spectrometer. Int J Mass Spectrom 263(2):204–212

    CAS  Google Scholar 

  • Stobiński L, Zommer L, Duś R (1999) Molecular hydrogen interactions with discontinuous and continuous thin gold films. Appl Surf Sci 141(3):319–325

    Google Scholar 

  • Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506

    CAS  PubMed  Google Scholar 

  • Suh Y-W, Kim N-Y, Ahn W-S, Rhee H-K (2001) Redox-mesoporous molecular sieve as a bifunctional catalyst for the one-pot synthesis of campholenic aldehyde from α-pinene. J Mol Catal A 174:249–254

    CAS  Google Scholar 

  • Swift KAD (2004) Catalytic transformations of the major terpene feedstocks. Top Catal 27(1):143–155

    CAS  Google Scholar 

  • Thomas AF, Bessière Y (1989) Limonene. Nat Prod Rep 6(3):291–309

    CAS  Google Scholar 

  • Thompson D (1999) New advances in gold catalysis part II. Gold Bull 32(1):12–19

    CAS  Google Scholar 

  • Tracy N, Chen D, Crunkleton D, Price G (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88(11):2238–2240

    CAS  Google Scholar 

  • van der Lingen E (2005) Gold’s other uses. In: The LBMA precious metals conference, Johannesburg, pp 75–80

  • Vigneron F, Caps V (2016) Evolution in the chemical making of gold oxidation catalysts. C R Chim 19(1):192–198

    CAS  Google Scholar 

  • Volcho KP, Rogoza LN, Salakhutdinov NF, Tolstikov GA (2008) Ch. 2 Monotsiklicheskie monoterpenoidy: limonen, karvon i ikh proizvodnye (Part 2/1. Monocyclic monoterpenoids: limonene, carvone, and their derivatives). In: Preparativnaya khimiya terpenoidov (Preparative chemistry of terpenoids). Art-Avenyu, Novosibirsk, p 229

  • Weissermel K, Jurgen Arpe H (2003) Industrial organic chemistry: important raw materials and intermediates. Wiley-VCH, New York, p 491

    Google Scholar 

  • Winter R (2009) A consumer’s dictionary of food additives. Random House Inc., New York, p 608

    Google Scholar 

  • Wolf A, Schüth F (2002) A systematic study of the synthesis conditions for the preparation of highly active gold catalysts. Appl Catal A 226(1):1–13

    CAS  Google Scholar 

  • Xiang J, Luo Z (2018) Study on the pinene isomerization catalyzed by TiM. Chin J Chem Eng 26(12):2537–2541

    CAS  Google Scholar 

  • Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky G (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152-155

    CAS  Google Scholar 

  • Yılmazoğlu E, Akgün M (2018) p-Cymene production from orange peel oil using some metal catalyst in supercritical alcohols. J Supercrit Fluids 131:37–46

    Google Scholar 

  • Yolles RS, Wood BJ, Wise H (1971) Hydrogenation of alkenes on gold. J Catal 21(1):66–69

    CAS  Google Scholar 

  • You K-J, Chang C-T, Liaw B-J, Huang C-T, Chen Y-Z (2009) Selective hydrogenation of α, β-unsaturated aldehydes over Au/MgxAlO hydrotalcite catalysts. Appl Catal A 361(1):65–71

    CAS  Google Scholar 

  • Yu N, Ding Y, Lo A-Y, Huang S-J, Wu P-H, Liu C et al (2011) Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: effects of pore architecture and surface modification method of the supports. Microporous Mesoporous Mater 143(2):426–434

    CAS  Google Scholar 

  • Yue L, Li J, Chen W, Liu X, Jiang Q, Xia W (2017) Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohyd Polym 176:356–364

    CAS  Google Scholar 

  • Zhang Y, Cui X, Shi F, Deng Y (2012) Nano-gold catalysis in fine chemical synthesis. Chem Rev 112(4):2467–2505

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JAB and ALV acknowledge financial support from the Universidad de Antioquia and OFA acknowledges the Universidad Cooperativa de Colombia.

Author information

Authors and Affiliations

Authors

Contributions

JAB, ALV and OFA wrote manuscript and chose references, contributed to the discussions. JAB edited the figures and references. All authors read and approved the final manuscript version to be submitted.

Corresponding author

Correspondence to Aída-Luz Villa.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becerra, JA., Arbeláez, Ó.F. & Villa, AL. Transformation of monoterpenes and monoterpenoids using gold-based heterogeneous catalysts. Braz. J. Chem. Eng. 37, 1–27 (2020). https://doi.org/10.1007/s43153-020-00013-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00013-1

Keywords

Navigation