Skip to main content
Log in

Synthesis, Structure and Electro-Physical Properties n-GaAs–p-(GaAs)1 –xy(Ge2)x(ZnSe)y Heterostructures (Review)

  • SOLAR-ENERGY MATERIALS SCIENCE
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

A review of experimental and theoretical studies on technology for producing the single-crystal substitutional solid solution of p-(GaAs)1 – x – y(Ge2)x(ZnSe)y on (GaAs) with the given crystallographic orientation using the liquid-phase epitaxy method is presented in this paper. The methods for determining the optimal parameters of the grown epitaxial films are given. Based on the analysis of literature data and the experimental results of the authors, the optimal parameters of epitaxial films are established. The solid solutions (GaAs)0.69(Ge2)0.17(ZnSe)0.14 have a sphalerite structure and possible configurations of the arrangement of atoms and molecules are determined. It has been established that paired Ge atoms partially replace GaAs molecules in the defective regions of the matrix lattice, and zinc selenide molecules form nanoislands on the surface layer of the GaAs1 – xGex solid solution, which have the geometric shape dome, with lateral dimensions of 55–65 nm. Research investigating current transfer mechanisms in n-GaAs–p-(GaAs)1 – x – y(Ge2)x(ZnSe)y hetero-structures at room temperature show that in the voltage range from 0.7 to 3 V degree depends J = АVα1 = 2, α2 = 2.7 and α3 = 3) are observed, which arise due to the formation of complex recombination complexes. The noticeable photosensitivity of n-GaAs–p-(GaAs)0.69(Ge2)0.17(ZnSe)0.14 hetero-structure begins at the photon energy of 1.16 eV, and the maximum is observed at the photon energy of 1.38 eV. In the short-wave region of the emission spectrum, peaks are observed with maxima at photon energies of 1.37, 1.47, 1.65, 1.88, 2.3, and 2.62 eV, as well as the gentle portion at 2.26–2.46 eV. Analysis using the Gaussian approximation showed that these features of the photo-spectrum are related to the state of the atoms of the constituent components and their interaction when illuminated by sunlight. It has been established that heterostructures have the property of controlled selective photosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Saidov, M.S., New chemical compounds and silicon-containing continuous solid solutions for solar cells, Geliotekhnika, 1998, no. 2, pp. 4–10.

  2. Saidov, M.S., Possible semiconductor continuous solid solutions for thermo photoelectric elements, Geliotekhnika, 1999, no. 3, pp. 52–58.

  3. Zainabidinov, S.Z., Saidov, A.S., Leiderman, A.Yu., et al., Growth, structure, and properties of GaAs-based (GaAs)1 – x – y(Ge2)x(ZnSe)y epitaxial films, Semiconductors, 2016, vol. 50, no. 1, pp. 59–65.

    Article  Google Scholar 

  4. Sapaev, B., Synthesis and properties of Ge–(Ge2)1 – x-(GaAs)x epitaxial heterostructures grown by LPE from lead based solution melts, Tech. Phys. Lett., 2004, vol. 30, no. 15, pp. 657–659.

    Article  Google Scholar 

  5. Kawai, H., Giorgi, G., and Yamashita, K., Back cover: impact of short-range order and clusterization on the bandgap bowing: first-principles calculations on the electronic properties of metastable (GaAs)1 – x(Ge2)x alloys, Phys. Status Solidi B, 2012, vol. 249, no. 1, pp. 29–37.

    Article  Google Scholar 

  6. Sapaev, B., Saidov, A.S., and Zaveryukhin, B.N., The synthesis and properties of epitaxial layers of (Si2)1 – x(GaAs)x solid solutions on silicon substrates, Tech. Phys. Lett., 2004, vol. 30, no. 2, pp. 51–54.

    Article  Google Scholar 

  7. Brazhkin, V.V., High-pressure synthesized materials: treasures and hints, High Press. Res., 2007, vol. 27, no. 3, pp. 333–351.

    Article  Google Scholar 

  8. Gu, B.-L., Ni, J., and Zhu, J.-L., Structure of the alloy (GaAs)1 – xGe2x and its electronic properties, Phys. Rev. B, 1992, vol. 45, no. 8, p. 4071.

    Article  Google Scholar 

  9. Sapaev, B., Saidov, A.S., and Dadamukhamedov, S., Growth and photoelectric properties of graded gap Si–(Si2)1 – x(GaP)x heterostructures, Tech. Phys., 2004, vol. 49, no. 5, pp. 1243–1246.

    Article  Google Scholar 

  10. Sapaev, B. and Saidov, A.S., The synthesis and photoelectric properties of Si–(Si2)1 – x(ZnS)x epitaxial structures, Tech. Phys. Lett., 2004, vol. 30, no. 17, pp. 715–716.

    Article  Google Scholar 

  11. Saidov, A.S., Saidov, M.S., Usmonov, Sh.N., Kholikov, K.T., and Saparov, D., Growth and photosensitivity of pSi–n(GaSb)1 – x(Si2)x structures, Appl. Sol. Energy, 2007, vol. 43, no. 3, pp. 183–185.

    Article  Google Scholar 

  12. Vasil’ev, V.I., Gagis, G.S., Kuchinskii, V.I., and Danil’chenko, V.G., Formation of III–V ternary solid solutions on GaAs and GaSb plates via solid-phase substitution reactions, Semiconductors, 2015, vol. 49, no. 7, pp. 962–966.

    Article  Google Scholar 

  13. Andreev, V.M., Khvostikov, V.P., Kalyuzhnyi, N.A., et al., GaAs/Ge heterostructure photovoltaic cells fabricated by a combination of MOCVD and zinc diffusion techniques, Semiconductors, 2004, vol. 38, no. 3, pp. 355–359.

    Article  Google Scholar 

  14. Gadzhialiev, M.M., Pirmagomedov, Z.Sh., and Efendieva, T.N., The effect of a thermoelectric field on a current-voltage characteristic of the p-Ge–n-GaAs heterojunction, Semiconductors, 2004, vol. 38, no. 11, pp. 1302–1303.

    Article  Google Scholar 

  15. Vartanyan, R.S., Electrophysical, optical and luminescent properties of metastable solid solutions (Ge2)x(GaAs)1 – x and heterojunctions based on them, Cand. Sci. (Phys. Math.) Dissertation, Leningrad: Phys. Tech. Inst., 1984.

  16. Gubanov, A.I. and Polubotko, A.M., Zone structure of Ge2x(GaAS)1 – x solid solution, Sov. Phys. Semicond., 1982, vol. 16, no. 6, pp. 537–539.

    Google Scholar 

  17. Razzakov, A.Sh., Investigations of the conditions of epitaxial growth of new graded-gap solid solutions (Ge2)1 – x(ZnSe)x and some of their electrical, photoelectric properties, Cand. Sci. (Phys. Math.) Dissertation, T.: Phys. Tech. Inst., 1998.

  18. Saidov, A.S., Saidov, M.S., Usmonov, Sh.N., and Rakhmonov, U.Kh., Heat-voltaic effect of pSi–n(ZnSe)1–xy(Si2)x(GaP)y structures, Appl. Sol. Energy, 2010, vol. 46, no. 1, pp. 60–62.

    Article  Google Scholar 

  19. Saidov, A.S., Razzakov, A.Sh., Risaeva, V.A., and Koschanov, E.A., Liquid-phase epitaxy of solid solutions (Ge2)1 – x(ZnSe)x, Mater. Chem. Phys., 2001, vol. 68, nos. 1–3, pp. 1–6.

    Article  Google Scholar 

  20. Adachi, S., Properties of Semiconductor Alloys: Group –IV, III-V and II-VI Semiconductors, Japan: Wiley, 2009, pp. 11–39.

    Book  Google Scholar 

  21. Jacobs, R.N., Markunas, J., Pellegrino, J., et al., Role of thermal expansion matching in CdTe heteroepitaxy on highly lattice-mismatched substrates, J. Cryst. Growth, 2008, vol. 310, no. 12.1, pp. 2960–2965.

  22. Davlatov, U.T., Heterostructures Si–Si1 – xGex, Si–Si1 – x-Gex–GaAs, Si–(Si2)1 – x(GaAs)x, (0 ≤ x ≤ 1) obtained by liquid-phase epitaxy, their electrophysical and photoelectric characteristics, Cand. Sci. (Phys. Math.) Dissertation, T.: Phys. Tech. Inst., 2006.

  23. Saidov, A.S. and Boboev, A.Y., Growth of solid solutions of replacement (GaAs)0.69(Ge2)0.17(ZnSe)0.14 and (GaAs)0.76(ZnSe)0.15(Ge2)0.09, in Proceedings of the International Symposium New Tendencies of Developing Fundamental and Applied Physics Problems, Achievements, Prospectives, 2016, pp. 178–180.

  24. Zainabidinov, S.Z., Saidov, A.S., Boboev, A.I., et al., Determination of optimal technological conditions for growing epitaxial layers (GaAs1 – δBiδ)1 – x – у-(Ge2)x(ZnSe)y by liquid epitaxy method, Nauch. Vestn. AndGU, 2018, no. 3, pp. 15–18.

  25. Zainabidinov, S.Z., Iulchiev, Sh.Kh., Boboev, A.I., et al., Features of growing an epitaxial layer of a solid solution (GaAs)1 – x – у(Ge2)x(ZnSe)y, Nauch. Vestn. AndGU, 2019, no. 1, pp. 5–8.

  26. Zainabidinov, S.Z., Boboev, A.I., and Usmonov, Zh.N., Influence of germanium and zinc selenium nanocrystals on the photoelectric properties of the n-GaAs –p‑(GaAs)0.69(Ge2)0.17(ZnSe)0.14 heterostructure, Al’tern. Energet. Ekol., 2019, nos. 10–12, pp. 43–51.

  27. Funato, M., Fujita, S., and Fujita, S., MOVPE growth and characterization of ZnSe–GaAs heterovalent heterostructures, Bull. Mater. Sci., 1995, vol. 18, no. 4, pp. 343–365.

    Article  Google Scholar 

  28. Funato, M., Title control of interface properties in ZnSe–GaAs heterovalent heterostructures grown by metalorganic vapor phase epitaxy, PhD Thesis, Japan: Kyoto Univ., 2000.

  29. Farrell, H.H. and la Violette, R.A., Cation variations at semiconductor interfaces: ZnSe(001)/GaAs(001) superlattices, J. Vacuum Sci. Technol. B, 2004, vol. 22, no. 4, pp. 2250–2256.

    Article  Google Scholar 

  30. Mosca, D.H., Schreiner, W.H., Kakuno, E.M., et al., Chemical and structural aspects of annealed ZnSe/GaAs(001) heterostructures, J. Appl. Phys., 2002, vol. 92, no. 7, pp. 3569–3572.

    Article  Google Scholar 

  31. Saidov, A.S., Usmonov, Sh.N., and Saparov, D.V., Structural studies of the epitaxial layer of a substitutional solid solution (GaAs)1 – x(ZnSe)x with nanocrystals, Adv. Mater. Sci. Eng., 2019, vol. 1, pp. 1–9.

    Article  Google Scholar 

  32. Wang, L.G. and Zunger, A., Dilute nonisovalent (II–VI)–(III–V) semiconductor alloys: monodoping, codoping, and cluster doping in ZnSe–GaAs, Phys. Rev. B, 2003, vol. 68, no. 12, pp. 1452–1459.

    Google Scholar 

  33. Glicksman, M. and Kraeft, W.D., Effect of high intrinsic ion concentrations on electron energies in solid solutions of III–V and II–VI semiconductors, Solid-State Electron., 1985, vol. 28, no. 1–2, pp. 151–161.

    Article  Google Scholar 

  34. Usmonov, Sh.N., The interaction of impurities in solid solutions based on silicon, gallium arsenide, zinc selenide, cadmium sulfide and the electrophysical properties of heterostructures obtained on their basis, Doctoral (Phys. Math.) Dissertation, T.: Phys. Tech. Inst., 2018.

  35. Saidov, A.S., Koshchanov, E.A., and Razzakov, A.Sh., Photosensitive n-GaAs–p-(Ge2)0.02(ZnSe)0.03(GaAs)0.95 structures in the spectral range of 0.7–1.4 eV, Geliotekhnika, 2000, no. 2, pp. 91–93.

  36. Saidov, A.S., Koshchanov, E.A., and Razzakov, A.Sh., On the possibility of improving the structural perfection of new GaAs–(Ge2)1 – x(ZnSe)x, Ge–(Ge2)1 – x(ZnSe)x, GaP–(Ge2)1 – x(ZnSe)x, Si–(Ge2)1 – x(ZnSe)x heterocouples, Tech. Phys. Lett., 1998, vol. 24, no. 2, pp. 47–48.

    Article  Google Scholar 

  37. Park, K. and Alberi, K., Tailoring heterovalent interface formation with light, Sci. Rep., 2017, no. 7, p. 8516.

  38. Bing-Yi, J., Jian-Bang, Zh., Chun-Feng, W., Juan, H., and Chong-De, C., Optimization of quantum dot solar cells, based on structures of GaAs/InAs–GaAs/ZnSe, Acta Phys. Sin., 2012, vol. 61, no. 13, pp. 1–6.

    Google Scholar 

  39. Zainabidinov, S.Z., Saidov, A.S., Kalanov, M.U., et al., High-resolution X-ray diffraction studies of (GaAs)1 – x – у(Ge2)x(ZnSe)y solid solution films, Dokl. Akad. Nauk Resp. Uzbek., 2015, no. 3, pp. 18–21.

  40. Shulpina, I.L., Kyutt, R.N., Ratnikov, V.V., Prokhorov, I.A., Bezbakh, I.Zh., and Shcheglov, M.P., X-ray diffraction diagnostics methods as applied to highly doped semiconductor single crystals, Tech. Phys., 2010, vol. 55, no. 4, pp. 537–545.

    Article  Google Scholar 

  41. Ravdel’, A.A. and Ponomareva, A.M., Kratkii spravochnik fiziko-khimicheskikh velichin (Short Handbook of Physico-Chemical Values), Leningrad: Khimiya, 1983.

  42. Boboev, A.I., Khamraeva, R.N., and Rustamova, V.M., Formation of Ge and ZnSe nanocrystals in (GaAs)1 – x – у-(Ge2)x(ZnSe)y epitaxial film, in Fizicheskie metody v estestvennykh naukakh, Materialy 52-i mezhdunarodnoi nauchnoi studencheskoi konferentsii (Proceedings of the 52nd International Student Conference on Physical Methods in Natural Sciences), 2014.

  43. Kul’bachinskii, V.A., Semiconductor quantum dots, Soros. Obrazov. Zh., 2001, vol. 7, no. 4, pp. 98–104.

    Google Scholar 

  44. Zainabidinov, S.Z. and Boboev, A.I., Morphological studies of the features of ZnSe nanoislands on the surface of (GaAs)1 – x(Ge2)x solid solution, Dokl. Akad. Nauk Resp. Uzbek., 2018, no. 4, pp. 17–21.

  45. Dubrovskii, V.G., Teoriya formirovaniya epitaksial’nykh nanostruktur (The Theory of Epitaxial Nanostructure Formation), Moscow: Fizmatlit, 2009.

  46. Zainabidinov, S.Z., Iulchiev, Sh.Kh., Mansurov, Kh.Zh., et al., Preparation and study of semiconductor epitaxial quantum dot heterostructures, Nauch. Vestn. AndGU, 2018, no. 4, pp. 11–13.

  47. Andreev, V.M., Khvostikov, V.P., Kalyuzhny, N.A., Titkov, S.S., Khvostikova, O.A., and Shvarts, M.Z., GaAs/Ge heterostructure photovoltaic cells fabricated by a combination of MOCVD and zinc diffusion techniques, Semiconductors, 2004, vol. 38, no. 3, pp. 355–359.

    Article  Google Scholar 

  48. Saidov, A.S. et al., Growth of (GaAs)1 – x(ZnSe)x solid solution films and investigation of their structural and some photoelectric properties, Phys. Solid State, 2011, vol. 53, no. 10, pp. 2012–2021.

    Article  Google Scholar 

  49. Boboev, A.I., Zainabidinov, S.Z., et al., Electrical and photoelectric properties of (GaAs)1 – x – у-(Ge2)x(ZnSe)y epitaxial films, Uzb. Fiz. Zh., 2015, vol. 17, no. 4, pp. 218–224.

    Google Scholar 

  50. Vikulin, I.M. and Stafeev, V.I., Fizika poluprovodnikovykh priborov (Physics of Semiconductor Devices), Moscow: Radio Svyaz’, 1990.

  51. Leiderman, A.Yu., Rekombinatsiya i relaksatsionnye protsessy v poluprovodnikakh s primesnymi kompleksami (Recombination and Relaxation Processes in Semiconductors with Impurity Complexes), Moscow: Metallurgiya, 1987.

  52. Lampert, M. and Mark, P., Current Injection in Solids, New York: Academic, 1970.

    Google Scholar 

  53. Saidov, A.S., Zainabidinov, S.Z., Kalanov, M.U., Boboev, A.Y., and Kutlimurotov, B.R., Peculiarities of photosensitivity of n(GaAs)–p(GaAs)1 – x – y(ZnSe)x(Ge2)y structures with quantum dots, Appl. Sol. Energy, 2015, vol. 51, no. 3, pp. 206–208.

    Article  Google Scholar 

  54. Zhuravlev, K.S. et al., Photoluminescence study of complexation in epitaxial heavily doped p-GaAs: Ge, Sov. Phys. Semicond., 1990, vol. 24, no. 9, pp. 1027–1029.

    Google Scholar 

  55. Zainabidinov, S., Kalanov, M., and Boboev, A., Structural characteristics of n-GaAs – p-(GaAs)1 – x – y-(Ge2)x(ZnSe)y heterostructures, in Proceedings of the International Conference Fundamental and Applied Problems of Physics,2017, pp. 107–110.

  56. Aleshkin, Ya. and Dubinov, A.A., Direct band Ge and Ge/InGaAs quantum wells in GaAs, J. Appl. Phys., 2011, vol. 109, no. 123, p. 107.

    Article  Google Scholar 

  57. Polushina, I.K., Rud’, V.Yu., and Rud’, Yu.V., Electrical and luminescent properties of GaAs–AIIBIVCV2 single crystals, Semiconductors, 1999, vol. 33, no. 6, pp. 645–647.

    Article  Google Scholar 

  58. Bletskan, D.I., Madyar, J.J., and Kabaciy, V.N., Effect of nonstoichiometry and doping on the photoconductivity spectra of GeSe layered crystals, Semiconductors, 2006, vol. 40, no. 2, pp. 137–142.

    Article  Google Scholar 

  59. Zainabidinov, S.Z., Boboev, A.I., and Usmonov, Zh.N., The effect of germanium and zinc selenide nanocrystals on the photoelectric properties of n-GaAs– p‑(GaAs)0.69(Ge2)0.17(ZnSe)0.14 heterostructure, in Materialy konferentsii Ispol’zovanie vozobnovlyaemykh istochnikov energii issledovaniya, tekhnologii i innovatsionnye podkhody (Proceedings of the Conference on the Use of Renewable Energy Research, Technology and Innovative Approaches), 2018, pp. 83–88.

  60. Suprun, S.P., Sherstyakova, V.N., and Fedosenko, E.V., Epitaxial growth of ZnSe on GaAs with the use of the ZnSe compound as the source, Semiconductors, 2009, vol. 43, no. 11, pp. 1526–1531.

    Article  Google Scholar 

  61. Tkachenko, I.V., The mechanism of defect formation and luminescence in homeless and tellurium-doped zinc selenide crystals, Cand. Sci. (Phys. Math.) Dissertation, 2005.

  62. Sluchanskaya, I.A., Osnovy materialovedeniya i tekhnologii poluprovodnikov (Principles of Material Science and Technology of Semiconductors), Moscow: Mir, 2002.

  63. Saidov, M.S., Solid solutions of many-component semiconductor compounds with nano-defects and extrinsic voltaic effects in photoelements, Geliotekhnika, 2006, no. 4, pp. 48–54.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Sci. Leiderman A.Yu. and Usmonоv Sh.N. for the discussion of the results.

The work was performed under grant number F2-68 of the Republic of Uzbekistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Boboev.

Additional information

Translated by A. Muravev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainabidinov, S.Z., Saidov, A.S., Kalanov, M.U. et al. Synthesis, Structure and Electro-Physical Properties n-GaAs–p-(GaAs)1 –xy(Ge2)x(ZnSe)y Heterostructures (Review). Appl. Sol. Energy 55, 291–308 (2019). https://doi.org/10.3103/S0003701X1905013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X1905013X

Keywords:

Navigation