Skip to main content

Advertisement

Log in

Characterization and Quantitative Determination of a Diverse Group of Bacillus subtilis subsp. subtilis NCIB 3610 Antibacterial Peptides

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Five antibacterial peptides produced by Bacillus subtilis NCIB 3610 were purified, quantified, characterized, and identified in the present study. Cell-free extracts were subjected to three purification protocols employing ammonium sulfate or organic solvent precipitation and their combination, followed by ion-exchange chromatography, solid-phase extraction, and preparative high-performance liquid chromatography (HPLC). The combined ammonium sulfate and organic solvent precipitation extraction protocol presented the best results for peptide purification. In the five fractions that presented antimicrobial activity, antibacterial peptides were quantified by the turbidometric method and by HPLC using nisin for external calibration, with the second providing more accurate results. All peptides were pH- and temperature-resistant and their sensitivity to proteases treatment indicated their proteinic nature. The five peptides were subjected to microwave-assisted acid hydrolysis (MAAH) and following derivatization were analyzed using norleucine as the internal standard, to determine their amino acid content. The identification of the isolated peptides using the UniProt and PubChem databases indicated that the four peptides correspond to UniProt entries of the bacteriocins Subtilosin-A (Q1W152) Subtilosin-SbOX (H6D9P4), Ericin B (Q93GH3), Subtilin (P10946), and the fifth to the non-ribosomal antibacterial lipopeptide surfactin (CID:443592). The amino acid content determination and computational analyses, applied in the present work on the antimicrobial peptides of B. subtilis, proved an efficient screening and quantification method of bacteriocins that could potentially be applied in other bacterial strains. The constructed phylogenetic trees heterogeneity observed across the five peptides investigated might be indicative of competitive advantage of the strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6):e1403. https://doi.org/10.7759/cureus.1403

    Article  PubMed  PubMed Central  Google Scholar 

  2. Michael CA, Dominey-Howes D, Labbate M (2014) The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2:145. https://doi.org/10.3389/fpubh.2014.00145

    Article  PubMed  PubMed Central  Google Scholar 

  3. Egan K, Ross RP, Hill C (2017) Bacteriocins: antibiotics in the age of the microbiome. Emerg Top Life Sci 1(1):55–63. https://doi.org/10.1042/ETLS20160015

    Article  CAS  PubMed  Google Scholar 

  4. FAO Monitoring and evaluation of the global action plan on antimicrobial resistance. Framework and recommended indicators. http://www.fao.org/antimicrobial-resistance/resources/resources-details/en/c/1197561

  5. Ali AA (2010) Beneficial role of lactic acid bacteria in food preservation and human health: a review. Res J Microbiol 5:1213–1221. https://doi.org/10.3923/jm.2010.1213.1221

    Article  Google Scholar 

  6. Roy P, Kumar V (2018) Functional food: probiotic as health booster. J Food Nutr Popul Health 2(2):12. https://doi.org/10.21767/2577-0586.100042

    Article  Google Scholar 

  7. Touraki M, Karamanlidou G, Koziotis M, Christidis I (2013) Antibacterial effect of Lactococcus lactis subsp. lactis on Artemia franciscana nauplii and Dicentrarchus labrax larvae against the fish pathogen Vibrio anguillarum. Aquac Int 21:481–495. https://doi.org/10.1007/s10499-012-9579-4

    Article  Google Scholar 

  8. Kerry G, Patra JK, Gouda S, Park Y, Shin HS, Das G (2018) Benefaction of probiotics for human health: a review. J Food Drug Anal 26:927–939. https://doi.org/10.1016/j.jfda.2018.01.002

    Article  CAS  Google Scholar 

  9. Zhang H, Sun L (2018) When human cells meet bacteria: precision medicine for cancers using the microbiota. Am J Cancer Res 8(7):1157–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar M, Nagpal R, Verma V, Kumar A, Kaur N, Hemalatha R, Gautam SK, Singh B (2013) Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr Rev 71(1):23–34. https://doi.org/10.1111/j.1753-4887.2012.00542.x

    Article  PubMed  Google Scholar 

  11. Majeed S, Nagabhushanam K, Natarajan S, Sivakumar A, Ali F (2016) Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods. Int J Food Sci Technol 51:894–901. https://doi.org/10.1111/ijfs.13044

    Article  CAS  Google Scholar 

  12. Elshaghabee F, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490. https://doi.org/10.3389/fmicb.2017.01490

    Article  PubMed  PubMed Central  Google Scholar 

  13. Touraki M, Karamanlidou G, Karavida P, Chrysi K (2012) Evaluation of the probiotics Bacillus subtilis and Lactobacillus plantarum bioencapsulated in Artemia nauplii against vibriosis in European sea bass larvae (Dicentrarchus labrax, L.). World J Microbiol Biotechnol 28(6):2425–2433. https://doi.org/10.1007/s11274-012-1052-z

    Article  PubMed  Google Scholar 

  14. Giarma E, Amanetidou E, Toufexi A, Touraki M (2017) Defense systems in developing Artemia franciscana nauplii and their modulation by probiotic bacteria offer protection against a Vibrio anguillarum challenge. Fish Shellf Immun 66:163–172. https://doi.org/10.1016/j.fsi.2017.05.008

    Article  CAS  Google Scholar 

  15. Hong HA, Khaneja R, Tam NM, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. https://doi.org/10.1016/j.resmic.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  16. Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  17. Parada JL, Caron C, Medeiros ABP, Soccol CR (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz Arch Biol Technol 50(3):521–542. https://doi.org/10.1590/S1516-89132007000300018

    Article  CAS  Google Scholar 

  18. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3

    Article  PubMed  Google Scholar 

  19. Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiot Antimicrob Proteins 8(4):177–182. https://doi.org/10.1007/s12602-016-9223-0

    Article  CAS  Google Scholar 

  20. Mokoena M P (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules (Basel, Switzerland), 22(8):1255. https://doi.org/10.3390/molecules22081255

  21. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  22. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molec Microb 56(4):845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

    Article  CAS  Google Scholar 

  23. Sumi CD, Yang BW, Yeo IC, Hahm YT (2014) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61(2):93–103. https://doi.org/10.1139/cjm-2014-0613

    Article  CAS  PubMed  Google Scholar 

  24. Touraki M, Frydas I, Karamanlidou G, Mamara A (2012) Partial purification and characterization of a bacteriocin produced by Bacillus subtillis NCIMB 3610 that exhibits antimicrobial activity against fish pathogens. J Biol Res (Thessalon) 18:310–319

    CAS  Google Scholar 

  25. Nonejuie P, Trial RM, Newton GL, Lamsa A, Ranmali Perera V, Aguilar J, Liu WT, Dorrestein PC, Pogliano J, Pogliano K (2016) Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis. J Antibiot (Tokyo) 69(5):353–361. https://doi.org/10.1038/ja.2015.116

    Article  CAS  Google Scholar 

  26. Zendo T (2013) Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem 77(5):893–899. https://doi.org/10.1271/bbb.130014

    Article  CAS  PubMed  Google Scholar 

  27. Perez RH, Himeno K, Ishibashi N, Masuda Y, Zendo T, Fujita K, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. J Biosci Bioeng 114(5):490–496. https://doi.org/10.1016/j.jbiosc.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Zhang L, Yi H, Shi J, Xue C, Li H, Jiao Y, Shigwedha N, Du M, Han X (2014) Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay. J Microbiol Methods 100:121–127. https://doi.org/10.1016/j.mimet.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  29. Cabo ML, Murado MA, González MP, Pastoriza L (1999) A method for bacteriocin quantification. J Appl Microbiol 87(6):907–914. https://doi.org/10.1046/j.1365-2672.1999.00942.x

    Article  CAS  PubMed  Google Scholar 

  30. Papagianni M, Avramidis N, Filioussis G, Dasiou D, Ambrosiadis I (2006) Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor “indicator microorganism”. Microb Cell Factories 5:30. https://doi.org/10.1186/1475-2859-5-30

    Article  CAS  Google Scholar 

  31. Turcotte C, Lacroix C, Kheadr E, Grignon L, Fliss I (2004) A rapid microplate bioassay for accurate quantification of lactic acid bacteria bacteriocins. Int J Food Microbiol 90:283–293. https://doi.org/10.1016/s0168-1605(03)00315-5

    Article  CAS  PubMed  Google Scholar 

  32. Katharopoulos E, Touloupi K, Touraki M (2016) Monitoring of multiple bacteriocins through a developed dual extraction protocol and comparison of HPLC-DAD with turbidometry as their quantification system. J Microbiol Methods 127:123–131. https://doi.org/10.1016/j.mimet.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  33. Tasakis RN, Touraki M (2018) Identification of bacteriocins secreted by the probiotic Lactococcus lactis following microwave-assisted acid hydrolysis (MAAH), amino acid content analysis, and bioinformatics. Anal Bioanal Chem 410(4):1299–1310. https://doi.org/10.1007/s00216-017-0770-3

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  35. Schagger H, Von Jagow H (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379. https://doi.org/10.1016/0003-2697(87)90587-2

    Article  CAS  PubMed  Google Scholar 

  36. Edman P, Högfeldt E, Sillén L, Kinell P (1950) Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4:283–293. https://doi.org/10.3891/acta.chem.scand.04-0283

    Article  CAS  Google Scholar 

  37. The Uniprot Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 42(D1):D191–D198. https://doi.org/10.1093/nar/gkt1140

    Article  CAS  Google Scholar 

  38. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast-online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44(W1):W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ansari A, Aman A, Siddiqui NN, Iqbal S, Ali ul Qader S (2012) Bacteriocin (BAC-IB17): screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak J Pharm Sci 25(1):195–201

    CAS  PubMed  Google Scholar 

  40. Khochamit N, Siripornadulsil S, Sukon P, Siripornadulsil W (2015) Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: Potential as a probiotic strain. Microbiol Res 170:36–50. https://doi.org/10.1016/j.micres.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  41. Hammami I, Rhouma A, Jaouad B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. J Appl Microbiol 48:253–260. https://doi.org/10.1111/j.1472-765X.2008.02524.x

    Article  CAS  Google Scholar 

  42. Compaoré CS, Nielsen DS, Ouoba LII, Berner TS, Nielsen KF, Sawadogo-Lingani H, Diawara B, Ouédraogo GA, Jakobsen M, Thorsen L (2013) Coproduction of surfactin and a novel bacteriocin by Bacillus subtilis subsp. Subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. Int J Food Microbiol 162:297–307. https://doi.org/10.1016/j.ijfoodmicro.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  43. Kuboi R, Maruki T, Tanaka H, Komasawa I (1994) Fermentation of Bacillus subtilis ATCC 6633 and production of subtilin in polyethene glycol/phosphate aqueous two-phase systems. J Ferment Bioeng 78:431–436. https://doi.org/10.1016/0922-338X(94)90042-6

    Article  CAS  Google Scholar 

  44. Stein T, Düsterhus S, Stroh A, Entian KD (2004) Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol 70(4):2349–2353. https://doi.org/10.1128/aem.70.4.2349-2353.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abriouel H, Franz CM, Ben Omar N, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microb Rev 35(1):201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x

    Article  CAS  Google Scholar 

  46. Kaboré D, Thorsen L, Nielsen DS, Berner TS, Sawadogo-Lingani H, Diawara B, Dicko MH, Jakobsen M (2012) Bacteriocin formation by dominant aerobic sporeformers isolated from traditional maari. Int J Food Microbiol 154(1–2):10–18. https://doi.org/10.1016/j.ijfoodmicro.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  47. Lai YS, Zhou Y, Martarella R, Wang Z, Rittmann BE (2017) Synergistic integration of C12–C16 cationic surfactants for flocculation and lipid extraction from chlorella biomass. ACS Sustain Chem Eng 5:752–757. https://doi.org/10.1021/acssuschemeng.6b02095

    Article  CAS  Google Scholar 

  48. Hou Q, Bourgeas R, Pucci F, Rooman M (2018) Computational analysis of the amino acid interactions that promote or decrease protein solubility. Sci Rep 8:14661. https://doi.org/10.1038/s41598-018-32988-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Achilli C, Ciana A, Minetti G (2018) Oxidation of cysteine-rich proteins during gel electrophoresis. J Biol Methods 5(4):e104. https://doi.org/10.14440/jbm.2018.275

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dicks L, Dreyer L, Smith C, van Staden AD (2018) A review: the fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front Microbiol 9:2297. https://doi.org/10.3389/fmicb.2018.02297

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xie J, Zhang R, Shang C, Guo Y (2009) Isolation and characterization of a bacteriocin produced by an isolated Bacillus subtilis LFB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr J Biotechnol 8:5611–5619. https://doi.org/10.4314/ajb.v8i20.66016

    Article  Google Scholar 

  52. Shaligram NS, Singhal RS (2010) Surfactin – a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol 48(2):119–134 https://hrcak.srce.hr/53621

    CAS  Google Scholar 

  53. Meena KR, Sharma A, Kanwar SS (2019) Antitumoral and antimicrobial activity of surfactin extracted from Bacillus subtilis KLP2015. Int J Pept Res Ther 26:423–433. https://doi.org/10.1007/s10989-019-09848-w

    Article  CAS  Google Scholar 

  54. Volpon H, Besson F, Lancelin JM (2000) NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A. FEBS Lett 485(1):76–80. https://doi.org/10.1016/S0014-5793(00)02182-7

    Article  CAS  PubMed  Google Scholar 

  55. Oman TJ, Boettcher JM, Wang H, Okalibe XN, Van Der Donk WA (2011) Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7:78–80. https://doi.org/10.1038/nchembio.509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Denham EL, Piersma S, Rinket M, Reilman E, de Goffau MC, van Dijl JM (2019) Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host. Sci Rep 9:2845. https://doi.org/10.1038/s41598-019-39169-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Moita C, Feio SS, Nunes L, Curto MJM, Roseiro JC (2005) Optimization of physical factors on the production of active metabolites by Bacillus subtilis 355 against wood surface contaminant fungi Int. Biodeterior Biodegrad 55:261–269. https://doi.org/10.1016/j.ibiod.2005.02.003

    Article  CAS  Google Scholar 

  58. Vargas-Bautista C, Rahlwes K, Straight P (2014) Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis. J Bacteriol 196(4):717–728. https://doi.org/10.1128/JB.01022-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu WT, Yang YL, Xu Y, Lamsa A, Haste NM, Yang JY, Ng J, Gonzalez D, Ellermeier CD, Straight PD, Pevzner PA, Pogliano J, Nizet V, Pogliano K, Dorrestein PC (2010) Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. PNAS 107(37):16286–16290. https://doi.org/10.1073/pnas.1008368107

    Article  PubMed  Google Scholar 

  60. Allenby NEE, Watts CA, Homuth G, Prágai Z, Wipat A, Ward AC, Harwood CR (2006) Phosphate starvation induces the sporulation killing factor of Bacillus subtilis. J Bacteriol 188(14):5299–5303. https://doi.org/10.1128/JB.00084-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stein T (2019) Oxygen-limiting growth conditions and deletion of the transition state regulator protein Abrb in Bacillus subtilis 6633 result in an increase in subtilosin production and a decrease in subtilin production. Probiotics Antimicrob Prot 12(2):725–731. https://doi.org/10.1007/s12602-019-09547-4

    Article  CAS  Google Scholar 

  62. Nikiforova OA, Klykov S, Volski A, Dicks LMT, Chikindas ML (2016) Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium. Ann Microbiol 66:661–671. https://doi.org/10.1007/s13213-015-1149-3

    Article  CAS  Google Scholar 

  63. Stein T, Borchert S, Conrad B, Feesche J, Hofemeister B, Hofemeister J, Entian KD (2002) Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184(6):1703–1711. https://doi.org/10.1128/JB.184.6.1703-1711.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zheng G, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182(11):3266–3273. https://doi.org/10.1128/jb.182.11.3266-3273.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qin Y, Wang Y, He Y, Zhang Y, She Q, Chai Y, Li P, Shang Q (2019) Characterization of subtilin L-Q11, a novel class i bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil. Front Microbiol 10:484. https://doi.org/10.3389/fmicb.2019.00484

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Touraki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagiota, A., Tsitsopoulou, H., Tasakis, R.N. et al. Characterization and Quantitative Determination of a Diverse Group of Bacillus subtilis subsp. subtilis NCIB 3610 Antibacterial Peptides. Probiotics & Antimicro. Prot. 13, 555–570 (2021). https://doi.org/10.1007/s12602-020-09706-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09706-y

Keywords

Navigation