Skip to main content
Log in

Influence of light spectra and elicitors on growth and ascaridole content using in vitro cultures of Dysphania ambrosioides L.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Dysphania ambrosioides L. is a medicinal plant with anti-helmintic potential. The aim of this study was to evaluate separately the effect of light spectra and elicitors on Dysphania ambrosioides growth and volatile constituents in vitro. Thus, plantlets were first cultured under blue (B), red (R), white, combinations of B:R (1:1, 2:1, 1:2) from LEDs and fluorescent lamps. Secondly, nodal segments were inoculated in the medium supplemented with chitosan (0, 50, 100, 150, and 200 mg L− 1) and salicylic acid (0, 3, 6, 9, and 12 mg L− 1). After 40 days of cultivation, the growth parameters and chemical composition of volatile constituents were evaluated. The light spectra significantly influenced in vitro growth of D. ambrosioides. The best growth occured using white LED or a blue:red combination of 2:1. It was also observed that the blue LEDs inhibited the synthesis of Z-ascaridole, while fluorescent light promoted a greater conversion of α-terpinene into ascaridole. The elicitors, chitosan and salicylic acid had a negative effect on the growth of nodal segments. However, the highest Z-ascaridole content was obtained at 50 to 100 mg L− 1 of chitosan and with 6 to 9 mg L− 1 of salicylic acid. The present study demonstrates that shoots regenerated from nodal segments exposed to different light spectra or on MS medium containing chitosan and salicylic acid can exhibit an altered growth and increased volatile constituents of interest.

Key message

Elicitors and different wavelengths provided by LEDs and fluorescent lamp were developed for Dysphania ambrosioides, altering growth and increase volatile constituents of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GC/MS:

Gas chromatography/mass spectrometry

LED:

Light emitting diodes

R:

Red

B:

Blue

MS:

Murashige and Skoog medium

PPFD:

Photosynthetic photon flux density

References

  • Acemi A (2020) Chitosan versus plant growth regulators: a comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq. Plant Cell Tissue Organ Cult 141(2):327–338. https://doi.org/10.1007/s11240-020-01789-3

    Article  CAS  Google Scholar 

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, vol 4. Allured Publishing Corporation, Illinois

    Google Scholar 

  • Ahmad Z, Shahzad A, Sharma S (2019) Chitosan versus yeast extract driven elicitation for enhanced production of fragrant compound 2-hydroxy-4-methoxybenzaldehyde (2H4MB) in root tuber derived callus of Decalepis salicifolia (Bedd. ex Hook.f.) Venter. Plant Cell Tissue Organ Cult 136(1):29–40. https://doi.org/10.1007/s11240-018-1488-4

    Article  CAS  Google Scholar 

  • Alvarenga ICA, Pacheco FV, Silva ST, Bertolucci SKV, Pinto JEBP (2015) In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tiss Org 122(2):299–308. https://doi.org/10.1007/s11240-015-0766-7

    Article  CAS  Google Scholar 

  • Andrade HB, Braga AF, Bertolucci SKV, Hsie BS, Silva ST (2017) Pinto JEBP Effect of plant growth regulators, light intensity and LED on growth and volatile compound of Hyptis suaveolens (L.) Poit in vitro plantlets. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 277–284

    Google Scholar 

  • Batista DS, de Castro KM, da Silva AR, Teixeira ML, Sales TA, Soares LI, das Graças Cardoso M, de Oliveira Santos M, Viccini LF, Otoni WC, (2016) Light quality affects in vitro growth and essential oil profile in Lippia alba (Verbenaceae). In Vitro Cell Dev Biol Plant 52(3):276–282. https://doi.org/10.1007/s11627-016-9761-x

    Article  CAS  Google Scholar 

  • Batista DS, Felipe SHS, Silva TD, de Castro KM, Mamedes-Rodrigues TC, Miranda NA, Ríos-Ríos AM, Faria DV, Fortini EA, Chagas K, Torres-Silva G, Xavier A, Arencibia AD, Otoni WC (2018) Light quality in plant tissue culture: does it matter? In Vitro Cell Dev Biol Plant 54(3):195–215. https://doi.org/10.1007/s11627-018-9902-5

    Article  CAS  Google Scholar 

  • Billore V, Mirajkar SJ, Suprasanna P, Jain M (2019) Gamma irradiation induced effects on in vitro shoot cultures and influence of monochromatic light regimes on irradiated shoot cultures of Dendrobium sonia orchid. Biotechnol Rep 22:e00343. https://doi.org/10.1016/j.btre.2019.e00343

    Article  Google Scholar 

  • Biswas T, Mathur A, Gupta V, Singh M, Mathur AK (2019) Salicylic acid and ultrasonic stress modulated gene expression and ginsenoside production in differentially affected Panax quinquefolius (L.) and Panax sikkimensis (Ban.) cell suspensions. Plant Cell Tissue Organ Cult 136(3):575–588. https://doi.org/10.1007/s11240-018-01538-7

    Article  CAS  Google Scholar 

  • Carvalho AAd, Bertolucci SKV, da Silva GM, da Cunha SHB, Roza HLH, Aazza S, Pinto JEBP (2018) Mesos components (CaCl2, MgSO4, KH2PO4) induced changes in growth and ascaridole content of Dysphania ambrosioides L. in vitro. Ind Crop Prod 122:28–36. https://doi.org/10.1016/j.indcrop.2018.05.042

    Article  CAS  Google Scholar 

  • Cioć M, Szewczyk A, Żupnik M, Kalisz A, Pawłowska B (2018) LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell Tissue Organ Cult 132(3):433–447. https://doi.org/10.1007/s11240-017-1340-2

    Article  CAS  Google Scholar 

  • Conceição AMdF, Silva GRdLJBd (1999) Influência do ácido acetilsalicílico, da sacarose e da temperatura na con-servação in vitro de segmentos caulinares de batata. Hortic Bras 17(3):182–185

    Article  Google Scholar 

  • Costa M, Tavares E (2006) Anatomia foliar de Chenopodium ambrosioides L. (Chenopodiaceae)–erva-de-Santa Maria. Rev Bras Plantas Medic 8(3):63–71

    Google Scholar 

  • Cunha SHB, Silva ST, Bertolucci SKV, de Carvalho AA, Rocha TT, Pinto JEBP (2019) Influência da qualidade de luz no crescimento e acúmulo de voláteis de Mentha spicata cultivada in vitro. Scientia Plena 15(9), 1-11. https://doi.org/10.14808/sci.plena.2019.090201

  • Cysne DN, Fortes TS, Reis AS, de Paulo Ribeiro B, dos Santos Ferreira A, do Amaral FMM, Guerra RNM, Marinho CRF, Nicolete R, Nascimento FRF (2016) Antimalarial potential of leaves of Chenopodium ambrosioides L. Parasitol Res 115(11):4327–4334. https://doi.org/10.1007/s00436-016-5216-x

    Article  Google Scholar 

  • Dembitskya V, Shkrobb I, Hanusa LO (2008) Ascaridole and related peroxides from the genus Chenopodium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 152(2):209–215

    Article  Google Scholar 

  • Duan Y, Zhang H, Meng X, Huang M, Zhang Z, Huang C, Zhao F, Xue T, Xue J (2019) Accumulation of salicylic acid-elicited alkaloid compounds in in vitro cultured Pinellia ternata microtubers and expression profiling of genes associated with benzoic acid-derived alkaloid biosynthesis. Plant Cell Tissue Organ Cult 139(2):317–325. https://doi.org/10.1007/s11240-019-01685-5

    Article  CAS  Google Scholar 

  • Dutta Gupta S, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7(3):211–220. https://doi.org/10.1007/s11816-013-0277-0

    Article  Google Scholar 

  • Elyasi R, Majdi M, Bahramnejad B, Mirzaghaderi G (2016) Spatial modulation and abiotic elicitors responses of the biosynthesis related genes of mono/triterpenes in black cumin (Nigella sativa). Ind Crop Prod 79:240–247. https://doi.org/10.1016/j.indcrop.2015.11.005

    Article  CAS  Google Scholar 

  • Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N (2009) Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 9(3):610–624

    Article  CAS  Google Scholar 

  • Fortes GRdL, Pereira JES (2001) Preservação in vitro da batata com ácido acetilsalicílico e duas fontes de carboidrato. Pesq Agrop Bras 36:1261–1264

    Article  Google Scholar 

  • Gai Q-Y, Jiao J, Wang X, Zang Y-P, Niu L-L, Fu Y-J (2019) Elicitation of Isatis tinctoria L. hairy root cultures by salicylic acid and methyl jasmonate for the enhanced production of pharmacologically active alkaloids and flavonoids. Plant Cell Tissue Organ Cult 137(1):77–86. https://doi.org/10.1007/s11240-018-01553-8

    Article  CAS  Google Scholar 

  • Golkar P, Taghizadeh M, Yousefian Z (2019) The effects of chitosan and salicylic acid on elicitation of secondary metabolites and antioxidant activity of safflower under in vitro salinity stress. Plant Cell Tissue Organ Cult 137(3):575–585. https://doi.org/10.1007/s11240-019-01592-9

    Article  CAS  Google Scholar 

  • Gorelick J, Rosenberg R, Smotrich A, Hanuš L, Bernstein N (2015) Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochemistry 116:283–289

    Article  CAS  Google Scholar 

  • Hashimoto T, Yun D-J, Yamada Y (1993) Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 32(3):713–718. https://doi.org/10.1016/S0031-9422(00)95159-8

    Article  CAS  Google Scholar 

  • Hsie BSd, Bueno AIS, Bertolucci SKV, de Carvalho AA, da Cunha SHB, Martins ER, Pinto JEBP (2019) Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of Lippia rotundifolia Cham in vitro. J Photoch Photobio B Biol 198:111577. https://doi.org/10.1016/j.jphotobiol.2019.111577

    Article  CAS  Google Scholar 

  • Johnson MA, Croteau R (1984) Biosynthesis of ascaridole: Iodide peroxidase-catalyzed synthesis of a monoterpene endoperoxide in soluble extracts of Chenopodium ambrosioides fruit. Arch Biochem Biophys 235(1):254–266. https://doi.org/10.1016/0003-9861(84)90274-1

    Article  CAS  Google Scholar 

  • Kerbauy GB (2004) Fisiologia vegetal. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Keun HC, Veronica YL, Nathan W-S, David GC, Kevin MF, Thomas AC (2019) Effects of light quality on vegetative cutting and in vitro propagation of coleus (Plectranthus scutellarioides). HortScience 54(5):926–935. https://doi.org/10.21273/hortsci13903-19

    Article  Google Scholar 

  • Kubica P, Szopa A, Prokopiuk B, Komsta Ł, Pawłowska B, Ekiert H (2020) The influence of light quality on the production of bioactive metabolites: verbascoside, isoverbascoside and phenolic acids and the content of photosynthetic pigments in biomass of Verbena officinalis L. cultured in vitro. J Photoch Photobio B Biol 203:111768. https://doi.org/10.1016/j.jphotobiol.2019.111768

    Article  CAS  Google Scholar 

  • Lafever RE, Croteau R (1993) Hydride Shifts in the Biosynthesis of the p-Menthane Monoterpenes α-Terpinene, γ-Terpinene, and β-Phellandrene. Arch Biochem Biophys 301(2):361–366. https://doi.org/10.1006/abbi.1993.1156

    Article  CAS  Google Scholar 

  • Lazzarini LES, Bertolucci SKV, Pacheco FV, dos Santos J, Silva ST, de Carvalho AA, Pinto JEBP (2018) Quality and intensity of light affect Lippia gracilis Schauer plant growth and volatile compounds in vitro. Plant Cell Tiss Org 135(3):367–379. https://doi.org/10.1007/s11240-018-1470-1

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes methods enzymol, vol 148. Academic Press, New York, pp 350–382

  • Lim YJ, Eom SH (2013) Effects of different light types on root formation of Ocimum basilicum L. cuttings. Sci Hortic 164:552–555. https://doi.org/10.1016/j.scienta.2013.09.057

    Article  CAS  Google Scholar 

  • Liu Z-B, Chen J-G, Yin Z-P, Shangguan X-C, Peng D-Y, Lu T, Lin P (2018) Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures. Plant Cell Tissue Organ Cult 134(1):79–93. https://doi.org/10.1007/s11240-018-1401-1

    Article  CAS  Google Scholar 

  • Lu X, Tang KX, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01647

    Article  Google Scholar 

  • Maia AJ, Leite CD, Botelho RV, Faria CMDR, Uber SC (2010) Efeitos da quitosana no desenvolvimento in vitro de videiras cv. merlot e no crescimento micelial do fungo Elsinoe ampelina. Cienc Agrotec 34:1425–1430

    Article  CAS  Google Scholar 

  • Mandal S (2010) Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. Afr J Biotechnol 9(47):8038–8047

    Article  CAS  Google Scholar 

  • Manivannan A, Soundararajan P, Halimah N, Ko CH, Jeong BR (2015) Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotechnol 56(1):105–113. https://doi.org/10.1007/s13580-015-0114-1

    Article  CAS  Google Scholar 

  • Marks TR, Simpson SE (1999) Effect of irradiance on shoot development in vitro. Plant Growth Regul 28(2):133–142. https://doi.org/10.1023/a:1006276724956

    Article  CAS  Google Scholar 

  • Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler J-P (2005) Diurnal and Seasonal Variation of Isoprene Biosynthesis-Related Genes in Grey Poplar Leaves. Plant Physiol 139(1):474–484. https://doi.org/10.1104/pp.105.066373

    Article  CAS  Google Scholar 

  • Merkli A, Christen P, Kapetanidis I (1997) Production of diosgenin by hairy root cultures ofTrigonella foenum-graecum L. Plant Cell Rep 16(9):632–636. https://doi.org/10.1007/bf01275505

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Namdeo A (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1(1):69–79

    CAS  Google Scholar 

  • Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170(6):1185–1190. https://doi.org/10.1016/j.plantsci.2006.02.006

    Article  CAS  Google Scholar 

  • Nhut DT, Huy NP, Tai NT, Nam NB, Luan VQ, Hien VT, Tung HT, Vinh BT, Luan TC (2015) Light-emitting diodes and their potential in callus growth, plantlet development and saponin accumulation during somatic embryogenesis of Panax vietnamensis Ha et Grushv. Biotechnol Biotechnol Equip 29(2):299–308. https://doi.org/10.1080/13102818.2014.1000210

    Article  CAS  Google Scholar 

  • NIST (2008) PC version 2.0 of the NIST/EPA/NIH mass spectral library. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Oliveira Td, de Carvalho AA, Bertolucci SKV, Rocha JPM, Cossa MC, Pinto JEBP (2020) Elicitação com quitosana no crescimento e nos compostos voláteis de Mentha arvensis in vitro. Scientia Plena. https://doi.org/10.14808/sci.plena.2020.040201

  • Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149(1):57–63. https://doi.org/10.1016/S0176-1617(96)80173-8

    Article  CAS  Google Scholar 

  • Putalun W, Luealon W, De-Eknamkul W, Tanaka H, Shoyama Y (2007) Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnol Lett 29(7):1143–1146. https://doi.org/10.1007/s10529-007-9368-8

    Article  CAS  Google Scholar 

  • Qian Z-G, Zhao Z-J, Xu Y, Qian X, Zhong J-J (2006) Novel Chemically Synthesized Salicylate Derivative as an Effective Elicitor for Inducing the Biosynthesis of Plant Secondary Metabolites. Biotechnol Prog 22(1):331–333. https://doi.org/10.1021/bp0502330

    Article  CAS  Google Scholar 

  • R Core Development Team(2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahimi S, Devi BSR, Khorolragchaa A, Kim YJ, Kim JH, Jung SK, Yang DC (2014) Effect of salicylic acid and yeast extract on the accumulation of jasmonic acid and sesquiterpenoids in Panax ginseng adventitious roots. Russ J Plant Physiol 61(6):811–817. https://doi.org/10.1134/s1021443714060156

    Article  CAS  Google Scholar 

  • Rocha PSGd O, RPd, Scivittaro WB, Santos ULd (2010) Diodos emissores de luz e concentrações de BAP na multiplicação in vitro de morangueiro. Cienc Rural 40:1922–1928

    Article  Google Scholar 

  • Runkle ES, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126(3):275–282

    Article  Google Scholar 

  • Sá RD, Soares LAL, Randau kP (2015) Óleo essencial de Chenopodium ambrosioides L.: estado da arte. Rev Cienc Farm Básica Aplicada 36(2):267–276

    Google Scholar 

  • Sakhanokho HF, Kelley RY (2009) Influence of salicylic acid on in vitro propagation and salt tolerance in Hibiscus acetosella and Hibiscus moscheutos (cv ‘Luna Red’). Afr J Biotechnol 8:1474–1481

    CAS  Google Scholar 

  • Sathiyabama M, Bernstein N, Anusuya S (2016) Chitosan elicitation for increased curcumin production and stimulation of defence response in turmeric (Curcuma longa L.). Ind Crop Prod 89:87–94. https://doi.org/10.1016/j.indcrop.2016.05.007

    Article  CAS  Google Scholar 

  • Shabani L, Ehsanpour A, Asghari G, Emami J (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russ J Plant Physiol 56(5):621–626. https://doi.org/10.1134/S1021443709050069

    Article  CAS  Google Scholar 

  • Sharan S, Sarin NB, Mukhopadhyay K (2019) Elicitor-mediated enhanced accumulation of ursolic acid and eugenol in hairy root cultures of Ocimum tenuiflorum L. is age, dose, and duration dependent. S Afr J Bot 124:199–210. https://doi.org/10.1016/j.sajb.2019.05.009

    Article  CAS  Google Scholar 

  • Shvydkiv O (2013) Microphotochemistry-a new resources efficient synthesis tool approach. Dublin City University, Dublin

    Google Scholar 

  • Silva ST, Bertolucci SKV, da Cunha SHB, Lazzarini LES, Tavares MC, Pinto JEBP (2017) Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell Tiss Org. https://doi.org/10.1007/s11240-017-1195-6

    Article  Google Scholar 

  • Silva TD, Batista DS, Fortini EA, Castro KMd, Felipe SHS, Fernandes AM, Sousa RMdJ, Chagas K, Silva JVSd, Correia LNdF, Farias LM, Leite JPV, Rocha DI, Otoni WC (2020) Blue and red light affects morphogenesis and 20-hydroxyecdisone content of in vitro Pfaffia glomerata accessions. J Photoch Photobio B Biol 203:111761. https://doi.org/10.1016/j.jphotobiol.2019.111761

    Article  CAS  Google Scholar 

  • Singh A, Dwivedi P (2018) Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: A review. J Pharmacogn Phytochem 7(1):750–757

    CAS  Google Scholar 

  • Singh AK, Tala T, Tanna M, Nirmal D, P J (2016) Effect of exogenous supply of salicylic acid on in vitro growth and development of rose micropropagules. Int J Rec Sci Res 7(6):12034–12039

    Google Scholar 

  • Soares TdC, Sales FMS, Santos JWd, Carvalho JMFC (2014) Quitosana e fitorreguladores na indução da organogênese direta em cultivar de algodão colorido. Rev Bras Eng Agric Ambient 18:839–843

    Article  Google Scholar 

  • Streit NM, Canterle LP, Canto MWd, Hecktheuer LHH (2005) As clorofilas. Cienc Rural 35:748–755

    Article  CAS  Google Scholar 

  • Takahashi H, Yamada H, Yoshida C, Imamura T (2012) Modification of light quality improves the growth and medicinal quality of clonal plantlets derived from the herbal plant Gentiana. Plant Biotechnol 29(3):315–318

    Article  Google Scholar 

  • The Plant List (2020) Version 1.1. http://www.theplantlist.org/. Accessed 02 Jan 2020

  • Topchiy NM, Sytnik SK, Syvash OO, Zolotareva OK (2005) The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum. Photosynthetica 43(3):451–456. https://doi.org/10.1007/s11099-005-0072-4

    Article  CAS  Google Scholar 

  • van Den Dool H, Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromat A 11:463–471. https://doi.org/10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  • Verissimo LF, Bacchi AD, Zaminelli T, Paula GHOd, Moreira EG (2011) Herbs of interest to the Brazilian Federal Government: female reproductive and developmental toxicity studies. Rev Bras Farmacogn 21:1163–1171

    Article  Google Scholar 

  • Witbooi H, Okem A, Makunga NP, Kambizi L (2017) Micropropagation and secondary metabolites in Agathosma betulina (Berg.). S Afr J Bot 111:283–290. https://doi.org/10.1016/j.sajb.2017.03.015

    Article  CAS  Google Scholar 

  • Xu Y, Yang M, Cheng F, Liu S, Liang Y (2020) Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC Plant Biol 20(1):269. https://doi.org/10.1186/s12870-020-02480-7

    Article  CAS  Google Scholar 

  • Yao H, Tian S (2005) Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35(3):253–262. https://doi.org/10.1016/j.postharvbio.2004.09.001

    Article  CAS  Google Scholar 

  • Zare-Hassani E, Motafakkerazad R, Razeghi J, Kosari-Nasab M (2019) The effects of methyl jasmonate and salicylic acid on the production of secondary metabolites in organ culture of Ziziphora persica. Plant Cell Tissue Organ Cult 138(3):437–444. https://doi.org/10.1007/s11240-019-01639-x

    Article  CAS  Google Scholar 

  • Zefzoufi M, Smaili A, Fdil R, Rifai LA, Faize L, Koussa T, Makroum K, Ben Ali A, Tabyaoui M, Mouzdahir A, Sraidi K, Faize M (2020) Composition of essential oil of Moroccan Dysphania ambrosioides and its antimicrobial activity against bacterial and fungal phytopathogens. J Plant Pathol 102(1):47–58. https://doi.org/10.1007/s42161-019-00371-x

    Article  Google Scholar 

  • Zhang T, Shi Y, Piao F, Sun Z (2018) Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell Tissue Organ Cult 134(2):231–240. https://doi.org/10.1007/s11240-018-1415-8

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Minas Gerais State Research Foundation (FAPEMIG—Fundação de Pesquisa do Estado de Minas Gerais), National Council for Scientific and Technological Development (CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico), and the Coordination for the Improvement of Higher Education Personnel (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES—Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

AAC and JEBPP conceived the study, designed the experiments; AAC, SKVB, ACH, TTR, STS, and JEBPP performed experiments, analyzed data; AAC and JEBPP wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to José Eduardo Brasil Pereira Pinto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by Konstantin V. Kiselev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, A.A., Bertolucci, S.K.V., Honorato, A.d. et al. Influence of light spectra and elicitors on growth and ascaridole content using in vitro cultures of Dysphania ambrosioides L.. Plant Cell Tiss Organ Cult 143, 277–290 (2020). https://doi.org/10.1007/s11240-020-01892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01892-5

Keywords

Navigation