Skip to main content
Log in

Nucleosynthesis-Rate Dependence of Abundances of Nuclei Produced in the r-Process

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The rate of neutron-induced nucleosynthesis of heavy nuclei is determined by the astrophysical scenario and by the rate of beta decay of nuclei involved in the r-process. The effect of beta-decay rates calculated within various theoretical models on the abundances of heavy nuclei is analyzed on the basis of the yields of heavy nuclei in the r-process and the determination of their sensitivity to input data. It is shown that a sizable change in the r-process rate has a strong effect on the process of formation of the third peak in the abundance curve and on the size and position of this peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  2. A. G. W. Cameron, Publ. Astron. Soc. Pacif. 69, 201 (1957).

    Article  ADS  Google Scholar 

  3. P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys. J. Suppl. 11, 121 (1965).

    Article  ADS  Google Scholar 

  4. I. V. Panov, C. Freiburghause, and F.-K. Thielemann, Nucl. Phys. A 688, 587 (2001).

    Article  ADS  Google Scholar 

  5. I. V. Panov and F.-K. Thielemann, Nucl. Phys. A 718, 647 (2003).

    Article  ADS  Google Scholar 

  6. Yu. S. Lyutostanskiĭ and I. V. Panov, Sov. Astron. Lett. 14, 70 (1988).

    ADS  Google Scholar 

  7. C. Sneden, J. J. Cowan, I. I. Ivans, G. M. Fuller, S. Burles, T. C. Beers, and J. E. Lawler, Astrophys. J. Lett. 533, L139 (2000).

    Article  ADS  Google Scholar 

  8. E. Fermi, Z. Phys. 88, 161 (1934).

    Article  ADS  Google Scholar 

  9. J. Krumlinde and P. Möller, Nucl. Phys. A 417, 419 (1984).

    Article  ADS  Google Scholar 

  10. V. G. Aleksankin, Yu. S. Lyutostanskiĭ, and I. V. Panov, Sov. J. Nucl. Phys. 34, 804 (1981).

    Google Scholar 

  11. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).

    Article  ADS  Google Scholar 

  12. I. N. Borzov, Nucl. Phys. A 777, 645 (2006).

    Article  ADS  Google Scholar 

  13. Yu. S. Lutostansky, Phys. At. Nucl. 82, 528 (2019).

    Article  Google Scholar 

  14. P. Möller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

    Article  ADS  Google Scholar 

  15. K.-L. Kratz, K. Farouqi, and B. Pfeiffer, Prog. Part. Nucl. Phys. 59, 147 (2007).

    Article  ADS  Google Scholar 

  16. G. Martínez-Pinedo and K. Langanke, Phys. Rev. Lett. 83, 4502 (1999).

    Article  ADS  Google Scholar 

  17. I. Panov, Yu. Lutostansky, and F.-K. Thielemann, J. Phys.: Conf. Ser. 940, 012053 (2018).

    Google Scholar 

  18. I. V. Panov, Yu. S. Lutostansky, and F.-K. Thielemann, Nucl. Phys. A 947, 1 (2016).

    Article  ADS  Google Scholar 

  19. I. V. Panov, Yu. S. Lutostansky, and F.-K. Thielemann, Bull. Russ. Acad. Sci.: Phys. 79, 437 (2015)

    Article  Google Scholar 

  20. A. Staudt, E. Bender, K. Muto, and H. V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44, 79 (1990).

    Article  ADS  Google Scholar 

  21. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. 355, 117 (1996).

    ADS  Google Scholar 

  22. P. Möller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  23. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967, transl. 1st ed.).

  24. M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin, T. Martinez-Pinedo, I. Panov, T. Rauscher, S. Rosswog, C. Winteler, N. T. Zinner, and F.-K. Thielemann, Astrophys. J. 808, 30 (2015).

    Article  ADS  Google Scholar 

  25. I. Yu. Korneev and I. V. Panov, Astron. Lett. 37, 864 (2011).

    Article  ADS  Google Scholar 

  26. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

    Article  ADS  Google Scholar 

  27. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  28. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).

    Article  ADS  Google Scholar 

  29. J. M. Pearson, R. C. Nayak, and S. Goriely, Phys. Lett. B 387, 455 (1996).

    Article  ADS  Google Scholar 

  30. I. V. Panov, I. Yu. Korneev, T. Rauscher, G. Martínez-Pinedo, A. Kelić-Heil, N. T. Zinner, and F.-K. Thielemann, Astron. Astrophys. 513, A61 (2010).

    Article  ADS  Google Scholar 

  31. I. V. Panov, Iu. Y. Korneev, and F.-K. Thielemann, Astron. Lett. 34, 189 (2008).

    Article  ADS  Google Scholar 

  32. NuDat2.2009, National Nuclear Data Center, Information Extracted from the NuDat 2 Database. http://www.nndc.bnl.gov/nudat2/.

  33. S. Rosswog, M. Liebendorfer, F.-K. Thielemann, M. B. Davies, W. Benz, and T. Piran, Astron. Astrophys. 341, 499 (1999).

    ADS  Google Scholar 

  34. G. Lorusso, S. Nishimura, Z. Y. Xu, A. Jungclaus, Y. Shimizu, G. S. Simpson, P.-A. Söderström, H. Watanabe, F. Browne, P. Doornenbal, G. Gey, H. S. Jung, B. Meyer, T. Sumikama, J. Taprogge, Zs. Vajta, et al., Phys. Rev. Lett. 114, 192501 (2015).

    Article  ADS  Google Scholar 

  35. D. Martin, A. Perego, A. Arcones, F.-K.Thielemann, O. Korobkin, and S. Rosswog, J. Phys.: Conf. Ser. 940, 012047 (2018).

    Google Scholar 

  36. S. Rosswog, U. Feindt, O. Korobkin, M.-R. Wu, J. Sollerman, A. Goobar, and G. Martinez-Pinedo, Class. Quantum Grav. 34 104001 (2017).

    Article  ADS  Google Scholar 

  37. T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  38. I. N. Borzov, Phys. At. Nucl. 83 (2020, in press).

Download references

Funding

This work was supported by Russian Foundation of Basic Research, grant no. 18-29-21019 mk for calculations of beta-decay rates and abundances of heavy nuclei; and grant no. 18-02-00670 for calculations of the beta-decay strength function \(S(E)\) for a number of nuclei with allowance for the resonance structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, I.V., Lutostansky, Y.S. Nucleosynthesis-Rate Dependence of Abundances of Nuclei Produced in the r-Process. Phys. Atom. Nuclei 83, 613–620 (2020). https://doi.org/10.1134/S1063778820040171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820040171

Navigation