Skip to main content
Log in

Isoscalar and Isovector Giant Resonances in Closed Shells Nuclei and Bulk Properties of Nuclear Matter

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Centroid energies, \(E_{\textrm{CEN}}\), of the isoscalar (\(T=0\)) and isovector (\(T=1\)) giant resonances of multipolarities \(L_{m}=0\)–3 in \({}^{\mathrm{40,48}}\)Ca, \({}^{\mathrm{68}}\)Ni, \({}^{\mathrm{90}}\)Zr, \({}^{\mathrm{116}}\)Sn, \({}^{\mathrm{144}}\)Sm, and \({}^{\mathrm{208}}\)Pb, were calculated within the fully self-consistent spherical Hartree–Fock (HF)-based random-phase approximation (RPA) theory, using 33 different energy density functionals associated with Skyrme-type effective nucleon–nucleon interactions of the standard form commonly employed in the literature. We also calculate the Pearson linear correlation coefficients between each \(E_{\mathrm{CEN}}\) and each bulk property of nuclear matter (NM), associated with the Skyrme interactions used in the calculations, and determine the sensitivity of \(E_{\mathrm{CEN}}\) to bulk properties of NM. By comparing the calculated values of \(E_{\textrm{CEN}}\) to the experimental data, we constrain the values of the bulk NM properties. We find that interactions associated with the values of the NM effective mass, \(m^{\ast}/m=0.70\)–0.90, incompressibility coefficient, \(K_{\textrm{NM}}=210\)–240 MeV, and the enhancement coefficient of the energy-weighted sum rule of the isovector giant dipole resonance, \(\kappa=0.25\)–0.70, best reproduce the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. A. Bohr and B. M. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.

    MATH  Google Scholar 

  2. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980).

    Book  Google Scholar 

  3. N. K. Glendening, Phys. Rev. 37, 2733 (1988).

    ADS  Google Scholar 

  4. J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007).

    Article  ADS  Google Scholar 

  5. G. C. Baldwin and G. S. Klaiber, Phys. Rev. 71, 3 (1947).

    Article  ADS  Google Scholar 

  6. M. B. Lewis and F. E. Bertrand, Nucl. Phys. A 196, 337 (1972).

    Article  ADS  Google Scholar 

  7. R. Pithan and T. Walcher, Phys. Lett. B 36, 563 (1971).

    Article  ADS  Google Scholar 

  8. D. H. Youngblood, C. M. Rozsa, J. M. Moss, D. R. Brown, and J. D. Bronson, Phys. Rev. Lett. 39, 1188 (1977).

    Article  ADS  Google Scholar 

  9. B. K. Agrawal, S. Shlomo, and A. I. Sanzhur, Phys. Rev. C 67, 034314 (2003).

    Article  ADS  Google Scholar 

  10. S. Shlomo, V. M. Kolomietz, and G. Colò, Eur. Phys. J. A 30, 23 (2006).

    Article  ADS  Google Scholar 

  11. S. Shlomo, Invited Review Article in the Book ‘‘The Universe Evolution: Astrophysical and Nuclear Aspects,’’ Ed. by L. Blokhintsev and I. Strakovsky (Nova Sci. Publ., 2013).

    Google Scholar 

  12. P.-G. Reinhard, Ann. Phys. (Berlin) 504, 632 (1992).

    Article  ADS  Google Scholar 

  13. T. Sil, S. Shlomo, B. K. Agrawal, and P.-G. Reinhard, Phys. Rev. C 73, 034316 (2006).

    Article  ADS  Google Scholar 

  14. S. Shlomo and A. I. Sanzhur, Phys. Rev. C 65, 044310 (2002).

    Article  ADS  Google Scholar 

  15. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 627, 710 (1997).

    Article  ADS  Google Scholar 

  16. G. Bonasera, M. R. Anders, and S. Shlomo, Phys. Rev. C 98, 054316 (2018).

    Article  ADS  Google Scholar 

  17. M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).

    Article  ADS  Google Scholar 

  18. B. K. Agrawal and S. Shlomo, Phys. Rev. C 70, 014308 (2004).

    Article  ADS  Google Scholar 

  19. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  20. B. K. Agrawal, S. Shlomo, and V. K. Au, Phys. Rev. C 72, 014310 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by US Department of Energy under grant no. DE-FG03-93ER40773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shlomo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlomo, S. Isoscalar and Isovector Giant Resonances in Closed Shells Nuclei and Bulk Properties of Nuclear Matter. Phys. Atom. Nuclei 83, 599–607 (2020). https://doi.org/10.1134/S1063778820040183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820040183

Navigation