Skip to main content
Log in

Analysis of dynamical behaviors of a 2-DOF friction oscillator with elastic impacts and negative feedbacks

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the flow switching theory of discontinuous dynamical systems is used as the main tool to study the dynamical behaviors of a two-degree-of-freedom friction oscillator with elastic impacts, where considering that the inequality of static and kinetic friction forces results in the existence of flow barriers at the relative velocity between the mass and conveyor belt tending to zero. The negative feedback is also taken into account, \(\mathrm {i.e.}\), when the direction of the relative velocity between the mass and conveyor belt changes, the constant force in the periodic excitation force will also change to adapt to the variation in speed. Due to the discontinuity resulted from the friction and non-smoothness resulted from impact, the motion of the two masses can be divided into the following kinds: non-sliding motion (or free motion), sliding motion, non-sliding–stick motion and sliding–stick motion, and the phase space in system is divided into different domains and boundaries, where the vector field is continuous in each region but discontinuous on the velocity boundary. The corresponding normal vectors and G-functions on the separation boundaries are introduced to acquire the switching conditions for all possible motions such as passable motion, sliding motion, grazing motion and stick motion. The mapping theory provides an effective method for the discussion of periodic motion in discontinuous dynamical systems. The four-dimensional switching sets are defined by the means of the form of direct product of two-dimensional switching sets, and the mapping structures are introduced based on the switching sets to describe periodic motions. Eventually, in order to explain more intuitively the above motions in such a friction–impact system, the velocity, displacement, G-functions time histories and the trajectories in phase plane for the masses are illustrated by simulation numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Levitan, E.: Forced oscillation of a spring-mass system having combined Coulomb and viscous damping. J. Acoust. Soc. Am. 32, 1265–1269 (1960)

    MathSciNet  Google Scholar 

  2. Yeh, G.: Forced vibrations of a two-degree-of-freedom system with combined Coulomb and viscous damping. J. Acoust. Soc. Am. 39(1), 14–24 (1966)

    MATH  Google Scholar 

  3. Filippov, A.F.: Differential equations with discontinuous right-hand side. Am. Math. Soc. Transl. 2(42), 99–231 (1964)

    MATH  Google Scholar 

  4. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  5. Trinkle, J., Pang, J., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with Coulomb friction. Z. Angew. Math. Meth. 77(4), 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Natsiavas, S.: Stability of piecewise linear oscillators with viscous and dry friction damping. J. Sound Vib. 217(3), 507–522 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Natsiavas, S., Verros, G.: Dynamics of oscillators with strongly nonlinear asymmetric damping. J. Sound Vib. 20(3), 221–246 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Schlesinger, A.: Vibration isolation in the presence of Coulomb friction. J. Sound Vib. 63(2), 213–224 (1979)

    Google Scholar 

  9. Leine, R., Campen, D., Kraker, A., Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    MATH  Google Scholar 

  10. Luo, A., Gegg, B.: Stick and non-stick periodic motions in periodically forced oscillators with dry friction. J. Sound Vib. 291(1–2), 132–168 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Gao, C.: Stick-slip motion in boundary lubrication. Tribol. Trans. 38(2), 473–477 (1995)

    Google Scholar 

  12. Galvanetto, U.: Bifurcations and chaos in a four-dimensional mechanical system with dry friction. J. Sound Vib. 204(4), 690–695 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Awrejcewicz, J., Olejnik, P.: Stick-slip dynamics of a two-degree-of-freedom system. Int. J. Bifurc. Chaos. 13(4), 843–861 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Pascal, M.: Dynamics of coupled oscillators excited by dry friction. ASME J. Comput. Nonlinear Dyn. 3(3), 20–26 (2008)

    Google Scholar 

  15. Pontes, B., Oliveira, V., Balthazar, J.: On stick-slip homoclinic chaos and bifurcation in a mechanical system with dry friction. Int. J. Bifurc. Chaos. 11(7), 2019–2029 (2001)

    Google Scholar 

  16. Galvanetto, U.: Some discontinuous bifurcations in a two-block stick-slip system. J. Sound Vib. 248(4), 653–669 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Capone, G., D’Agostino, V., Valle, S., Guida, D.: Influence of the variation between static and kinetic friction on stick-slip instability. Wear 161(1–2), 121–126 (1993)

    Google Scholar 

  18. Capone, G., D’Agostino, V., Valle, S., Guida, D.: Stick-slip instability analysis. Meccanica 27(2), 111–118 (1992)

    MATH  Google Scholar 

  19. Gaus, N., Proppe, C.: Bifurcation analysis of a stochastic non-smooth friction model. Proc. Appl. Math. Mech. 9(1), 281–282 (2009)

    Google Scholar 

  20. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. ASME Appl. Mech. Rev 58(6), 389–411 (2005)

    Google Scholar 

  21. Shaw, S., Holmes, P.: A periodically forced piecewise linear oscilator. J. Sound Vib. 90(1), 129–155 (1983)

    MATH  Google Scholar 

  22. Shaw, S., Holmes, P.: Periodically forced linear oscillator with impacts: chaos and long-period motions. Phys. Rev. Lett. 51(8), 623–626 (1983)

    MathSciNet  Google Scholar 

  23. Lamba, H.: Chaotic, regular and unbounded behaviour in the elastic impact oscillator. Physical D 82, 117–135 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Balachandran, B., Zhao, M., Li, Y.: Dynamics of elastic sturcture subjected to impact excitations. In: Moon, F.C. (ed.) Appl. Nonlinear Chaotic Dyn. Mech. Kluwer, Dordrecht (1997)

    Google Scholar 

  25. Knudsen, J., Massih, A.: Dynamic stability of weakly damped oscillators with elastic impacts and wear. J. Sound Vib. 263, 175–204 (2003)

    Google Scholar 

  26. Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2603–2616 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(2–4), 375–398 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Luo, G., Lv, X., Shi, Y.: Vibro-impact dynamics of a two-degree-of freedom periodically-forced system with a clearance: diversity and parameter matching of periodic-impact motions. Int. J. Nonlin. Mech. 65, 173–195 (2014)

    Google Scholar 

  29. Senator, M.: Existence and stability of periodic motions of a harmonically forced impacting system. J. Acoust. Soc. Am. 47(5B), 1390–1397 (1970)

    Google Scholar 

  30. Peterka, F.: Bifurcations and transition phenomena in an impact oscillator. Chaos, Solitons Fractals 7(10), 1635–1647 (1996)

    MathSciNet  MATH  Google Scholar 

  31. Wagg, D.: Multiple non-smooth events in multi-degree-of-freedom vibro-impact systems. Nonlinear Dyn. 43(1–2), 137–148 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Luo, G., Zhang, Y., Xie, J., Zhang, J.: Periodic-impact motions and bifurcations of vibro-impact systems near 1:4 strong resonance point. Commun. Nonlinear Sci. Numer. Simul. 13, 1002–1014 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Cao, J., Fan, J., Chen, S., Dou, C., Gao, M.: On discontinuous dynamics of a SDOF nonlinear friction impact oscillator. Int. J. Non-Linear Mech. 121, 103457 (2020)

    Google Scholar 

  34. Virgin, L., Begley, C.: Grazing bifurcations and basins of attraction in an impact-friction oscillator. Physica D 130(1–2), 43–57 (1999)

    MATH  Google Scholar 

  35. Cone, K., Zadoks, R.: A numerical study of an impact oscillator with the addition of dry friction. J. Sound Vib. 188(5), 659–683 (1995)

    Google Scholar 

  36. Hinrichs, N., Oestreich, M., Popp, K.: Dynamics of oscillators with impact and frictiont. Chaos, Solitons Fractals 8(4), 535–558 (1997)

    MATH  Google Scholar 

  37. Blazejczyk-Okolewska, B.: Study of the impact oscillator with elastic coupling of masses. Chaos, Solitons Fractals 11(15), 2487–2492 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Cheng, G., Zu, J.: Dynamics of a dry friction oscillator under two-frequency excitations. J. Sound Vib. 275, 591–603 (2004)

    Google Scholar 

  39. Zhu, S., Liu, Y., Lou, Y., Cao, D.: Stabilization of logical control networks: an event-triggered control approach. Sci. China. Inf. Sci. 63, 1–11 (2020)

    MathSciNet  Google Scholar 

  40. Zhu, S., Lu, J., Liu, Y.: Asymptotic stability of probabilistic Boolean networks with state delays. IEEE T. Autom. Control 65(4), 1779–1784 (2020)

    MATH  Google Scholar 

  41. Yang, D., Li, X., Shen, J., Zhou, Z.: State-dependent switching control of delayed switched systems with stable and unstable modes. Math. Methods Appl. Sci. 41(16), 6968–6983 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Yang, D., Li, X., Qiu, J.: Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback. Nonlinear Anal-Hybri. 32, 294–305 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Li, X., Yang, X., Huang, T.: Persistence of delayed cooperative models: impulsive control method. Appl. Math. Comput. 342, 130–146 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Yang, X., Li, X., Xi, Q., Duan, P.: Review of stability and stabilization for impulsive delayed systems. Math. Biosci. Eng. 15(16), 1495–1515 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Li, H., Ding, X.: A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM. J. Control. Optim. 57(2), 810–831 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Li, H., Xu, X., Ding, X.: Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect. Appl. Math. Comput. 347, 557–565 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Liu, Y., Zhang, Y., Li, H., Alsaadi, F., Ahmad, B.: Control design for output tracking of delayed Boolean control networks. J. Comput. Appl. Math. 327, 188–195 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Xue, S., Fan, J.: Discontinuous dynamical behaviors in a vibro-impact system with multiple constraints. Int. J. Non-Linear Mech. 98, 75–101 (2018)

    Google Scholar 

  49. Chen, S., Fan, J., Liu, T.: On discontinuous dynamics of a 2-DOF friction-influenced oscillator with multiple elastic constraints. Int. J. Non-Linear Mech. 110, 131–150 (2019)

    Google Scholar 

  50. Li, C., Fan, J., Yang, Z., Xue, S.: On discontinuous dynamical behaviors of a 2-DOF impact oscillator with friction and a periodically forced excitation. Mech. Mach. Theory 135, 81–108 (2019)

    Google Scholar 

  51. Luo, A.: A theory for non-smooth dynamic systems on the connectable domains. Commun. Nonlinear Sci. Numer. Simul. 10, 1–55 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Luo, A.: The mapping dynamics of periodic motions for a three-piecewise linear system under a periodic excitation. J. Sound Vib. 283, 723–748 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Luo, A., Gegg, B.: Grazing phenomena in a periodically forced, friction-induced, linear oscillator. Commun. Nonlinear Sci. Numer. Simul. 11, 777–802 (2006)

    MathSciNet  MATH  Google Scholar 

  54. Luo, A., Gegg, B.: An analytical prediction of sliding motions along discontinuous boundary in non-smooth dynamical systems. Nonlinear Dyn. 49, 401–424 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Luo, A.: On flow switching bifurcations in discontinuous dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 12, 100–116 (2007)

    MathSciNet  MATH  Google Scholar 

  56. Luo, A., Zwiegart, P.: Existence and analytical predictions of periodic motions in a periodically forced, nonlinear friction oscillator. J. Sound Vib. 309(1–2), 129–149 (2008)

    Google Scholar 

  57. Luo, A.: Flow switching bifurcations on the separation boundary in discontinuous dynamical systems with flow barriers. Proc. IMechE Part K: J Multi-Body Dyn. 221, 475–485 (2007)

    Google Scholar 

  58. Luo, A.: A theory for flow switchability in discontinuous dynamical systems. Nonlinear Anal. Hybrid Syst. 2, 1030–1061 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Luo, A.: Discontinuous Dynamical Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  60. Dou, C., Fan, J., Li, C., Cao, J., Gao, M.: On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints. Mech. Mach. Theory 147, 103750 (2020)

    Google Scholar 

  61. Fan, J., Liu, T., Chen, S.: Analysis of dynamical behaviors of a 2-DOF friction-induced oscillator with onesided impact on a conveyor belt. Nonlinear Dyn. 97(1), 797–830 (2019)

    Google Scholar 

  62. Luo, A., Rapp, B.: Sliding and transversal motions on an inclined boundary in a periodically forced discontinuous system. Commun. Nonlinear Sci. Numer. Simul. 15, 86–98 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Luo, A., Huang, J.: Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator. Int. J. Bifurc. Chaos. 13(1), 241–257 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Luo, A., Faraji Mosadman, M.: Singularity, switchability and bifurcations in a 2-DOF, periodically forced, frictional oscillator. Int. J. Bifurc. Chaos. 23(3), 30009 (2013)

    MathSciNet  MATH  Google Scholar 

  65. Fan, J., Xue, S., Chen, G.: On discontinuous dynamics of a periodically forced double-belt friction oscillator. Chaos, Solitons Fractals 109, 280–302 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 11971275) and the Natural Science Foundation of Shandong Province, China (No. ZR2019MA048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjun Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Fan, J. Analysis of dynamical behaviors of a 2-DOF friction oscillator with elastic impacts and negative feedbacks. Nonlinear Dyn 102, 45–78 (2020). https://doi.org/10.1007/s11071-020-05904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05904-z

Keywords

Navigation