Skip to main content
Log in

A paper-based device for the colorimetric determination of ammonia and carbon dioxide using thiomalic acid and maltol functionalized silver nanoparticles: application to the enzymatic determination of urea in saliva and blood

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric assay was developed which has the capability of determining urea in biological samples. It is an origami paper-based sensor consisting of silver nanoparticles that were synthesized by using two different capping agents: thiomalic acid and maltol. The function of the assay relied on hydrolysis of urea to ammonia and carbon dioxide in the presence of urease. The products interacted with nanoparticles which caused aggregation. Interestingly, thiomalic acid capped with silver nanoparticles were selective to ammonia, and the other nanoparticles synthesized by maltol responded to carbon dioxide. These interactions turned the color of nanoparticles from yellow to brown and red, respectively. The resulting colorations were captured by a floatable scanner. A routine image analysis software was utilized to provide the response of the assays. The method was applied to individually determine ammonia, carbon dioxide, and urea. The linear range was 0.06 mg.dL−1-170.0 mg.dL−1 for ammonia, 0.08 mg.dL−1-220.0 mg.dL−1 for carbon dioxide, and 0.5 mg.dL−1-200.0 mg.dL−1 for urea. The respective limits of detection were 0.03 mg.dL−1, 0.06 mg.dL−1, and 0.18 mg.dL−1. No interferences were found in the detremination of urea. The method demonstrates a reliable performance for determination of urea in both saliva and blood samples.

Schematic representation of paper based colorimetric sensor based on silver nanoparticles for both qualitative and quantitative analyses of urea in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Higgins C (2016) Urea and the clinical value of measuring blood urea concentration. AcutecaretestingOrg 127:1–6. https://doi.org/10.1039/b204949j

    Article  CAS  Google Scholar 

  2. Huang CP, Li YK, Chen TM (2007) A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens Bioelectron 22:1835–1838. https://doi.org/10.1016/j.bios.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  3. Filippatos G, Rossi J, Lloyd-Jones DM, Stough WG, Ouyang J, Shin DD, O'Connor C, Adams KF, Orlandi C, Gheorghiade M (2007) Prognostic value of blood urea nitrogen in patients hospitalized with worsening heart failure: insights from the acute and chronic therapeutic impact of a vasopressin antagonist in chronic heart failure (ACTIV in CHF) study. J Card Fail 13:360–364. https://doi.org/10.1016/j.cardfail.2007.02.005

    Article  PubMed  Google Scholar 

  4. Tomás I, Marinho JS, Limeres J, Santos MJ, Araújo L, Diz P (2008) Changes in salivary composition in patients with renal failure. Arch Oral Biol 53:528–532. https://doi.org/10.1016/j.archoralbio.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  5. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C (2011) Diagnostic potential of saliva: current state and future applications. Clin Chem 57:675–687. https://doi.org/10.1373/clinchem.2010.153767

    Article  CAS  PubMed  Google Scholar 

  6. Calice-Silva V, Sacomboio E, Raimann JG, Evans R, dos Santos Sebastião C, Tchivango AT, Kotanko P, Levin N, Pecoits-Filho R (2018) Diagnostic performance of salivary urea nitrogen dipstick to detect and monitor acute kidney disease in patients with malaria. Malar J 17:477. https://doi.org/10.1186/s12936-018-2627-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark S, Francis PS, Conlan XA, Barnett NW (2007) Determination of urea using high-performance liquid chromatography with fluorescence detection after automated derivatisation with xanthydrol. J Chromatogr A 1161:207–213. https://doi.org/10.1016/j.chroma.2007.05.085

    Article  CAS  PubMed  Google Scholar 

  8. Reddy KRC, Srivastava PK, Dey PM, Kayastha AM (2004) Immobilization of pigeonpea (Cajanus cajan) urease on DEAE-cellulose paper strips for urea estimation. Biotechnol Appl Biochem 39:323–327. https://doi.org/10.1042/BA20030122

    Article  Google Scholar 

  9. Ali N, Ismail M, Khan A, Khan H, Haider S, Kamal T (2018) Spectrophotometric methods for the determination of urea in real samples using silver nanoparticles by standard addition and 2nd order derivative methods. Spectrochim Acta - Part A Mol Biomol Spectrosc 189:110–115. https://doi.org/10.1016/j.saa.2017.07.063

    Article  CAS  Google Scholar 

  10. Ramesh R, Puhazhendi P, Kumar J, Gowthaman MK, D'Souza SF, Kamini NR (2015) Potentiometric biosensor for determination of urea in milk using immobilized Arthrobacter creatinolyticus urease. Mater Sci Eng C 49:786–792. https://doi.org/10.1016/j.msec.2015.01.048

    Article  CAS  Google Scholar 

  11. Ahmad R, Tripathy N, Hahn YB (2014) Highly stable urea sensor based on ZnO nanorods directly grown on Ag/glass electrodes. Sensors Actuators B Chem 194:290–295. https://doi.org/10.1016/j.snb.2013.12.098

    Article  CAS  Google Scholar 

  12. Pundir CS, Jakhar S, Narwal V (2019) Determination of urea with special emphasis on biosensors: a review. Biosens Bioelectron 123:36–50. https://doi.org/10.1016/j.bios.2018.09.067

    Article  CAS  PubMed  Google Scholar 

  13. Wang KH, Hsieh JC, Chen CC, Zan HW, Meng HF, Kuo SY, Nguyễn MTN (2019) A low-cost, portable and easy-operated salivary urea sensor for point-of-care application. Biosens Bioelectron 132:352–359. https://doi.org/10.1016/j.bios.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  14. Soni A, Surana RK, Jha SK (2018) Smartphone based optical biosensor for the detection of urea in saliva. Sensors Actuators B Chem 269:346–353. https://doi.org/10.1016/j.snb.2018.04.108

    Article  CAS  Google Scholar 

  15. Verma MS, Rogowski JL, Jones L, Gu FX (2015) Colorimetric biosensing of pathogens using gold nanoparticles. Biotechnol Adv 33:666–680. https://doi.org/10.1016/j.biotechadv.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  16. Daraee H, Pourhassanmoghadam M, Akbarzadeh A, Zarghami N, Rahmati-Yamchi M (2016) Gold nanoparticle–oligonucleotide conjugate to detect the sequence of lung cancer biomarker. Artif Cells, Nanomedicine Biotechnol 44:1417–1423. https://doi.org/10.3109/21691401.2015.1031905

    Article  CAS  Google Scholar 

  17. Bordbar MM, Tashkhourian J, Hemmateenejad B (2019) Structural elucidation and ultrasensitive analyses of volatile organic compounds by paper-based Nano-optoelectronic noses. ACS Sensors 4:1442–1451. https://doi.org/10.1021/acssensors.9b00680

    Article  CAS  PubMed  Google Scholar 

  18. Bordbar MM, Hemmateenejad B, Tashkhourian J, Nami-Ana SF (2018) An optoelectronic tongue based on an array of gold and silver nanoparticles for analysis of natural, synthetic and biological antioxidants. Microchim Acta 185. https://doi.org/10.1007/s00604-018-3021-1

  19. Parashar UK, Nirala NR, Upadhyay C, Saxena PS, Srivastava A (2015) Urease immobilized fluorescent gold nanoparticles for urea sensing. Appl Biochem Biotechnol 176:480–492. https://doi.org/10.1007/s12010-015-1589-z

    Article  CAS  PubMed  Google Scholar 

  20. Kaur B, Markan M, Singh M (2012) Green synthesis of gold nanoparticles from Syzygium aromaticum extract and its use in enhancing the response of a colorimetric urea biosensor. Bionanoscience 2:251–258. https://doi.org/10.1007/s12668-012-0062-5

    Article  Google Scholar 

  21. Arduini F, Cinti S, Caratelli V, Amendola L, Palleschi G, Moscone D (2019) Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens Bioelectron 126:346–354. https://doi.org/10.1016/j.bios.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  22. Sheini A (2020) Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices. Microchim Acta 187. https://doi.org/10.1007/s00604-020-4147-5

  23. Ding J, Li B, Chen L, Qin W (2016) A three-dimensional origami paper-based device for potentiometric biosensing. Angew Chemie 128:13227–13231. https://doi.org/10.1002/ange.201606268

    Article  Google Scholar 

  24. Colozza N, Kehe K, Dionisi G, Popp T, Tsoutsoulopoulos A, Steinritz D, Moscone D, Arduini F (2019) A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens Bioelectron 129:15–23. https://doi.org/10.1016/j.bios.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Siavash Moakhar R, Sudalaiyadum Perumal A, Roman HN, Mahshid S, Wachsmann-Hogiu S (2020) An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection Sci Rep 10:10. https://doi.org/10.1038/s41598-020-66422-x

    Article  CAS  Google Scholar 

  26. Prof. Shapley (2011) Dissolved Oxygen and Carbon Dioxide. Online 1–7

  27. Mohammadi S, Khayatian G (2017) Silver nanoparticles modified with thiomalic acid as a colorimetric probe for determination of cystamine. Microchim Acta 184:253–259. https://doi.org/10.1007/s00604-016-1991-4

    Article  CAS  Google Scholar 

  28. Naqvi S, Anwer H, Ahmed SW, Siddiqui A, Shah MR, Khaliq S, Ahmed A, Ali SA (2020) Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine Spectrochim Acta - Part A Mol Biomol Spectrosc 229: doi: https://doi.org/10.1016/j.saa.2019.118002

  29. Dey R, Kar S, Joshi S, Maiti TK, Chakraborty S (2015) Ultra-low-cost ‘paper-and-pencil’ device for electrically controlled micromixing of analytes. Microfluid Nanofluidics 19:375–383. https://doi.org/10.1007/s10404-015-1567-3

    Article  Google Scholar 

  30. Taghizadeh-Behbahani M, Hemmateenejad B, Shamsipur M, Tavassoli A (2019) A paper-based length of stain analytical device for naked eye (readout-free) detection of cystic fibrosis. Anal Chim Acta 1080:138–145. https://doi.org/10.1016/j.aca.2019.06.050

    Article  CAS  PubMed  Google Scholar 

  31. Sharifi H, Tashkhourian J, Hemmateenejad B (2020) A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: application to determination of cu(II) in water samples. Anal Chim Acta 1126:114–123. https://doi.org/10.1016/j.aca.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  32. Nery EW, Kubota LT (2016) Evaluation of enzyme immobilization methods for paper-based devices-a glucose oxidase study. J Pharm Biomed Anal 117:551–559. https://doi.org/10.1016/j.jpba.2015.08.041

    Article  CAS  PubMed  Google Scholar 

  33. Selvaraj SK, Amalraj AJ, Dharmalingam V, Wilson Sahayaraj J (2016) Inhibition of corrosion of carbon steel in sea water by thiomalic acid-Zn2+ system. Int J Nano Corr Sci Engg 3:96–109

    Google Scholar 

  34. Alev-Tuzuner B, Beyler-Cigil A, Vezir Kahraman M, Yarat A (2019) PEG-based hydrogel-coated test strip for on-site urea determination. Int J Polym Mater Polym Biomater 68:597–606. https://doi.org/10.1080/00914037.2018.1482460

    Article  CAS  Google Scholar 

  35. Shao T, Zhang P, Tang L, Zhuo S, Zhu C (2015) Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots. Microchim Acta 182:1431–1437. https://doi.org/10.1007/s00604-015-1469-9

    Article  CAS  Google Scholar 

  36. Deng HH, Hong GL, Lin FL, Liu AL, Xia XH, Chen W (2016) Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 915:74–80. https://doi.org/10.1016/j.aca.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  37. Kumar H, Kumar A, Kumari P, Tulsani NB (2000) A test strip for the estimation of urea in serum. Indian J Clin Biochem 15:124–127. https://doi.org/10.1007/BF02883740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azarmidokht Sheini.

Ethics declarations

The research process was approved by the medical ethics committee of Ahvaz university of medical sciences (Ethics code: IR.AJUMS.REC.1398.739).Prior to analysis, the test conditions were explained to the participants. They signed a consent form and allowed us to read their full medical history.

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheini, A. A paper-based device for the colorimetric determination of ammonia and carbon dioxide using thiomalic acid and maltol functionalized silver nanoparticles: application to the enzymatic determination of urea in saliva and blood. Microchim Acta 187, 565 (2020). https://doi.org/10.1007/s00604-020-04553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04553-8

Keywords

Navigation